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Let us consider a classical high school exercise concern-
ing two weights on a pulley and a string, illustrated 
in Fig. 1(a). A system like this is called an Atwood’s 

machine and was invented by George Atwood in 1784 as a 
laboratory experiment to verify the mechanical laws of mo-
tion with constant acceleration.1 Nowadays, Atwood’s ma-
chine is used for didactic purposes to demonstrate uniformly 
accelerated motion with acceleration arbitrarily smaller than 
the gravitational acceleration g. The simplest case is with a 
massless and frictionless pulley and a massless string. With 

little effort one can include the mass of the pulley in calcula-
tions. The mass of a string has been incorporated previously 
in some considerations and experiments.2-7  These include 
treatments focusing on friction, justifying the assumption 
of a massless string,6 incorporating variations in Earth’s 
gravitational field,5 comparing the calculated value of g 
based on a simple experiment,3 taking the mass of the string 
into account in such a way that the resulting acceleration is 
constant,2,4 or in one exception7 solely focusing on a heavy 
string, but with a slightly different approach. Here we wish 
to provide i) a derivation of the acceleration and position 
dependence on the weights’ masses based purely on basic dy-
namical reasoning similar to the conventional version of the 
exercise, and ii) focus on the influence of the string’s linear 
density, or equivalently its mass, on the outcome compared to 
a massless string case.

Conventional systems

The aim of the exercise is to calculate the acceleration of 
the weights. In the simplest case, when the mass of the pulley 
is m = 0 and the string is massless, it is easy to find the accel-
eration:

 
,
				            (1)

where we assumed, without loss of generality, that m1 > m2. In 
a slightly more complex situation, when the mass of the pul-
ley is nonzero, we need to take into account its moment of in-
ertia I. Assuming the pulley is a uniform disk , where  
r is the radius of the pulley, again, it is not difficult to find the 
acceleration to be

			            
(2)

Directing the x-axis downward and placing its origin on 
the level of the center of a pulley, the time-dependent position 
of a weight with mass m1 can be found based on a well-known 
formula describing a uniformly accelerated motion:

 				             
(3)

where L0 is the initial position. Yet how will such a system be-
have if the mass of the string m0 is nonzero?

Nonzero mass string
The tension of the string applied to the point of suspension 

of a weight and to the point where the string stops touching 
the pulley are not the same, as indicated in Fig. 1(b). Tension   
T1 is caused by the mass m1, while tension T2  is caused by the 
mass  m1 and the mass of a string with length L1—similarly 
for the weight with mass m2. Therefore, we have four differ-
ent tensions, not two like in the case of a massless string. We 
begin by finding the equations of motion for the masses m0, 
m1, m2, and m.

Let the string have a total length L. It is compounded of 
lengths of individual segments: 

				            
(4)

Of course L2 depends on L1 and vice versa:

		          (5)
Let us call L  a reduced length of a string. Let us assume 

also that the linear density of a string  is constant. We 
then divide our system into five subsystems: two weights, 
two segments of string, and a pulley. According to Newton’s 
second law of motion, the equations of motion for the weights 
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Fig. 1. (a) Tensions for a massless string and (b) for a 
nonzero mass string.
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						            (15)

are the coefficients of L1 and the free term in Eq. (12), respec-
tively, and we put x  L1. A solution of this differential Eq. 
(13) has the following form:

	                          (16)

which can be solved in two steps.8  First, take the correspond-
ing homogeneous equation   and assume a solution 
of a form x ~ e l t. Inserting this into the last equation, we get  
l2 e l t – Ae l t = 0 with a characteristic equation l2  – A= 0. 
Hence,  and the first part of the solution is  

The particular integral has to be a constant,  

which is easy to verify by insertion into Eq. (13). The solution 
is a sum x(t) = xH(t) + xP(t) and takes the form of Eq. (16); 
C1 and C2 are integration constants that can be determined 
by introducing initial conditions. For example, let the weight 
with mass m1 have a position x0 at time t = 0, and let the ini-
tial velocity be equal to zero. These assumptions lead to C1 = 
C2 and

				          
(17)

After inserting C1 = C2  and Eq. (17) into Eq. (16), the solu-
tion can be written in a compact form:

	
	                          

(18)

Now, what will happen if we want to use Eq. (18) for the 
case of a massless string? Based on Eq. (14), this means taking    
A = 0 in the position Eq. (18), but putting simply cosh0 =1 is 
not sufficient, as we also have two terms, which are inde-
terminate for A = 0. The proper way is to expand Eq. (18) into 
a Taylor series9 around A = 0 (Maclaurin series):

					                              (19)

0

and pulley are the same as in the case of a massless string:

					                                
(6)

					                                (7)

 		          
(8)

with a well-known relation between angular and linear ac-
celerations,

					             (9)
where a denotes the angular acceleration and I  is the mo-
ment of inertia of the pulley with a radius r  and a segment of 
a string (with mass rpr) touching the pulley. This leads to

and an effective mass 

For a pulley much heavier than the string (which is usually 
the case), we have m < m. Assuming T1 = T2 and  T3 = T4 we 
get, after solving the above system of equations, the accelera-
tion given by Eq. (2). However, in the nonzero mass string 
case, Newton’s second law gives us two more equations: one 
for each segment of the string. They are as follows:

   
						            

(10)
and

     		
	       				     	       (11)
Now we can solve the system (6)–(11) to find the acceleration 
a. From Eqs. (6), (7), (10), and (11) we evaluate tensions, in-
sert them into Eq. (8), and use Eq. (9) to eliminate r. Eventu-
ally, we get the following formula:

	

	                         
(12)

Again if we set m0 = 0, we get Eq. (2), so our solution properly 
reduces to a simpler case.

Further dynamical considerations
Next, we want to find the dependence of path on time 

when the weights move with the above acceleration (12). The 
last formula was derived for arbitrary L1, which is the x coor-
dinate. Hence, acceleration a is proportional to the position; 
in general, acceleration is a second derivative of the position 
with respect to time. Thus, we get the following differential 
equation:

					          (13)
where

					                              (14)  ,
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we showed that the difference in behavior may easily be ob-
servable.

Students and teachers are encouraged to perform compar-
ative experiments using strings with different linear densities. 
For example, one can use a very light string (approximately 
massless) and a light chain. Next, after precise measure-
ment of the falling time, the initial distance may be changed 
in order to plot several points to form a diagram similar to 
Fig. 2. Plotting results for different strings will allow i) direct 
comparisons of the influence of the string’s linear density on 
the motion and ii) fitting the x(t) function given by Eq. (18) 
to verify the initially measured parameters of the system. Due 
to easily taking into account the mass of the pulley, one can 
ascribe the differences mainly to the effects coming from the 
string’s mass (if one can justify an approximation of a fric-
tionless axle; if not, it has been already described6 how to take 
friction into account).
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We need to remember that m0 is also present in B; setting  
m0 = 0 reduces Eq. (15) correctly to Eq. (2), which means that 
Eq. (19) is equivalent to Eq. (3). This means that the solu-
tion Eq. (16) is general enough to incorporate also a massless 
string case.

Numerical illustration
Figure 2 displays plots of two position dependencies of a 

weight with mass m1: quadratic, obtained with the assump-
tion  m0 = 0, and hyperbolic for the case m0 > 0. The plots are 
for mass ratios m  : m1 : m2  : m0 = 2:1:0 . 5:0 . 02; these were 
chosen arbitrarily, but keeping them realistic enough to pres-
ent a possible laboratory experiment outcome.

Intuitively, a moving weight in the case of a string with 
mass should move faster than when the string is massless, and 
indeed Fig. 2 confirms this hypothesis. On the other hand, 
for values of the above parameters the difference is small but 
measurable. George Atwood in his experiment assumed that 
both the pulley and the string are massless, but this did not 
prevent him from achieving satisfactory results.

Conclusions and experimental design
A formula (12) for acceleration in the case of a nonzero 

mass string was derived. Next, the equation of motion (13) 
was formulated and solved to obtain a path-time relation-
ship (18). The solution was compared with that obtained for 
a massless string (3). It was found that the mass of a string 
results in the weight falling faster than when the string is 
massless. Using arbitrary but reasonable values of the masses, 
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Fig. 2. Dependence of position of a weight on time for a nonzero 
mass [x1(t)] and massless [x2(t)] string. The inset shows the differ-
ence between solutions. The mass m1 =1 kg. Note there are various 
units on the vertical axis.


