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The species–abundance distribution (SAD) describes the abundances of all species within a community. Many different 
models have been proposed to describe observed SADs. Best known are the logseries, the lognormal, and a variety of niche 
division models. They are most often visualized using either species richness – log abundance class (Preston) plots or abun-
dance – species rank order (Whittaker) plots. Because many of the models predict very similar shapes, model distinction 
and testing become problematic. However, the variety of models can be classified into three basic types: one that predicts a 
double S-shape in Whittaker plots and a unimodal distribution in Preston plots (the lognormal type), a second that lacks 
the mode in Preston plots (the logseries type), and a third that predicts power functions in both plotting types (the power 
law type). Despite the interest of ecologists in SADs no formal meta-analysis of models and plotting types has been under-
taken so far. Here we use a compilation of 558 species–abundance distributions from 306 published papers to infer the 
frequency of the three SAD shapes in dependence of environmental variables and type of plotting. Our results highlight 
the importance of distinguishing between fully censused and incompletely sampled communities in the study of SADs.We 
show that completely censused terrestrial or freshwater animal communities tend to follow lognormal type SADs more 
often than logseries or power law types irrespective of species richness, spatial scale, and geographic position. However, 
marine communities tend to follow the logseries type, while plant communities tend to follow the power law. In incom-
plete sets the power law fitted best in Whittaker plots, and the logseries in Preston plots. Finally our study favors the use of 
Whittaker over Preston plots. 
The species–abundance distribution (SAD) describes the 
abundances of all species within a community. Since its for-
mal introduction by Raunkiaer (1909) ecologists have used 
SADs as a tool to infer dominance orders, diversity and even-
ness (Magurran 2004, McGill et al. 2007). SADs are mostly 
plotted at semilog scales. Preston (1948) introduced fre-
quency log2 abundance (octaves) plots similar to plots of 
probability distributions (hereafter Preston plots, Fig. 1). 
This method involves a binning of abundances and therefore 
a loss of information. There is a considerable debate about 
the bias introduced from this binning (reviewed by Nekola 
et al. 2008). Plots of log-abundance versus species rank order 
were introduced by Whittaker (1965) (hereafter Whittaker 
plots) in order to avoid binning and the associated loss of 
information. While this method seems intuitively superior 
most studies still rely on Preston plots because it makes ana-
lytical treatment easier and fits do not rely on species rich-
ness (McGill et al. 2007). Standard fitting routines and 
common test statistics are based on Preston plots.

The interest of ecologists in SADs is mirrored by the large 
number of models designed to mimic observed abundance 
distributions. The recent review of McGill et al. (2007) lists 
27 different species–abundance models. They range from 
purely statistical sampling models like the log-series (Fisher 
et al. 1943), the lognormal (Preston 1948), or maximum 
entropy (Harte et al. 2008) to elaborate mechanistic models 
of niche division (Tokeshi 1999), ecological drift (Hubbell 
2001), or spatial distribution (Harte et al. 1999). The major-
ity of them predict very similar shapes that prohibit any clear 
model identification (Ollik 2008). However, all of these 
models can be subsumed under three basic SAD shapes in 
Whittaker and Preston plots (Fig. 1) (May 1975, Hughes 
1986, Magurran 2004, McGill et al. 2007, Ollik 2008), a 
lognormal, a logseries, and a power law shape. 

In Whittaker plots the lognormal shape is characterized 
by an upper positive and a lower negative curvature made by 
the few very dominant and a few very rare species (Fig. 1A). 
In Preston plots the lognormal type has a single mode (Fig. 
1B). It is typical for communities with lowered frequencies 
of very abundant and very rare species. Since Preston (1948) 
and May (1975) lognormal shapes have mainly been associ-
ated with communities stabilized by the influence of many 
ecological factors that together generate a lognormal abun-
dance distribution according to the central limit theorem of 
statistics (Hill and Hamer 2003, Magurran 2004, Šizling  
et al. 2009). The resource partitioning models of Sugihara 
(1980), Tokeshi (1996) and MacArthur (1957) also predict 
lognormal shapes.

The logseries is the Poisson sampling of a gamma distri-
bution and appears roughly as a skewed J-curve in Whittaker 
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plots without a marked lower curvature and at least for 
medium abundance classes as an equal distribution in Pres-
ton plots (Fig. 1). Since Patrick (1963), Whittaker (1965) 
and Gray (1979) the logseries has been associated with dis-
turbed, unstable, or early successional habitats. Neutrality 
predicts logseries at the metacommunity level (Hubbell 
2001). 

Lastly, power law SADs have been generated from fractal 
(Moulliot et al. 2000, Pueyo 2006) or Galton-Watson 
branching processes (Nee 2003). They have a constant posi-
tive curvature in Whittaker and in Preston plots (Fig. 1) and 
lack any mode in Preston plots. Chu and Adami (1999) 
applied power functions to fossil data and particularly argued 
for power laws at taxonomic levels above species. 

Despite the proliferation of SAD models and the discus-
sion around the shape of SADs, few studies were concerned 
with the frequency of these shapes in nature. Hughes (1986) 
compiled 222 communities and fitted lognormal, logseries 
and his dynamics model by eye, using the appearance of an 
upper and lower curvature in Whittaker plots and the exis-
tence of a single mode in Preston plots. Dewdney (2000) 
compared the fits of the logseries and his predation based 
model for 100 communities taken from the literature. Both 
authors reported a mix of shapes with a predominance of the 
logseries type. However, they did not use rigorous model 
testing and did not account for different numbers of free 
parameters in their models. 

Many authors discuss the point that observed local SADs 
are samples from a regional metacommunity SAD and the 
respective sample distributions are now well understood 
(reviewed by May 1975, Etienne and Alonso 2005, Green 
and Plotkin 2007). Preston’s famous ‘veil line’ (1948) and 
the associated problem of unseen (undersampled) species 
(reviewed by Magurran 2004, 2007) highlighted the need to 
use fairly completely censused communities for model test-
ing. Indeed, any SAD model contains the species richness S 
as a free parameter. However, most comparative studies on 
SADs (Hughes 1986, Tokeshi 1996, Dewdney 2000, Ugland 
et al. 2007, Harte et al. 2008) treated the communities under 
study as being fully censused and compared model fits irre-
spective of the completeness of the data set. In our view, such 
a procedure may often be misleading because traditionally a 
SAD is defined for all species of a community. Therefore, we 
here intend to undertake a metaanalysis about SADs of fully 
censused communities. Rather than comparing the fits of 
different models we focus on the three mentioned basic 
shapes of SADs and relate them to basic taxonomic,  
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biogeographic and ecological variables. We will show that 
fully censused communities are predominantly fitted by 
models that predict lognormal shapes but that common  
ecological and biogeographic classifications largely fail to 
predict a certain shape. Obviously we need a deeper under-
standing of how abundance differences emerge.

Material and methods

We compiled 558 species–abundance distributions from 306 
published papers, of which 504 were based on abundance 
(animals), or coverage (most plant data) and 54 on data on 
biomass. Species richness ranged between 10 and 460. The 
complete reference is given in Ulrich and Ollik (2003) and 
Ollik (2008). We used only data based on quantitative 
counting of individuals within a certain area. Coverage was 
only used when it was possible to recalculate to the individ-
ual level. This limitation is the reason why we considered 
only 53 plant data sets. Plant abundances are most often 
given as grouped coverage data within phytosociological 
classification schemes. These data do not allow for a direct 
comparison with individual based data. 

Any fitting of abundance models is extremely sensitive to 
the completeness of the species list (Hughes 1986, Miller 
and Wiegert 1989). Therefore, we classified the abundance 
data into fully censused and incomplete sets. In order to do 
so we used a two step approach and first estimated the total 
number of species from the number of singletons in the data 
sets using the first order jackknife estimator (Burnham and 
Overton 1978). We classified all data sets with more than 
five singletons and for which the estimator indicated a cover-
age of less than 95% of the total fauna or flora as being 
incomplete. We further screened the remaining data sets for 
whether they had been obtained from spatially identifiable 
habitats like lakes, whole forests, meadows, or from a whole 
ecoregion and/or whether they can be judged as being fully 
censused from the knowledge of the species richness of the 
associated metacommunity (many vertebrate and plant data 
sets). All data that were possibly samples from a larger region 
were also classified as being incomplete. This procedure iden-
tified 119 data sets that were sufficiently censused to fit 
abundance models (termed complete sets below). 385 data 
sets were classified as being too incomplete for further 
detailed analysis and were only used for a general compari-
son of model fit in the case of incomplete censuring. 

To relate distributions to environmental, ecological, and 
taxonomic variables we classified the 119 complete data sets 
into five major categories using the available information of 
the respective publications: a) continent (all continents 
except Asia for which only two complete data sets were avail-
able); b) biome (marine, freshwater, terrestrial); c) latitude 
(temperate, subtropical, tropical); d) taxonomy (vertebrates, 
invertebrates, plants); e) scale (metacommunity, smaller 
scale). 

Our meta-analysis is based on the three basic shapes 
defined in the introduction and we fitted three models that 
generate these shapes (the lognormal, the logseries and the 
power law abundance distributions) to Whittaker and  
Preston plots of the respective empirical distributions. The 
present paper deals therefore basically with SAD shapes and 
Figure 1. Basic shapes of species–abundance distributions in  
Whittaker (A) and Preston plots (B). Black dots: lognormal shape; 
open triangles: logseries; open squares: power law.



  Whittaker Preston

n Rank Rank

Model   1 2 3 1 2 3

Complete
Lognormal 119   53   40   26   60   37   22
Logseries 119   30   37   52   45   61   13
Power law 119   36   42   41   14   21   84

Incomplete
Lognormal 385 103 161 121 120 133 132
Logseries 385   68 127 190 143 189   53
Power law 385 214   97   74 122   63 200

Biomass
Lognormal   54   42 11     1   38   13     3
Logseries   54     5   7   42   14   39     1
Power law   54     9 34   11     4     0   50

Complete data sets

Variable Lognormal Logseries Power function

B SE B SE B SE
Species   0.01   0.01   0.02   0.01 –0.03 0.02
Singletons –0.69 0.4 –0.27   0.28   0.65 0.35
ln N –0.54   0.22 –0.25   0.17   0.49 0.22
Evenness   5.28   4.49 –3.75 3.1 –0.69 3.58

Incomplete data sets

Variable Lognormal Logseries Power function

B SE B SE B SE
Species –0.08 0.02 0.001   0.007   0.03 0.02
Singletons 0.57 0.13 0.1 0.04 –0.42 0.08
ln N –0.086 0.27 –0.21 0.13   0.36 0.16
Evenness 30.32 7.63 –9.63 2.55 1.1 2.34

Biomass data sets

Variable Lognormal Logseries Power function

B SE B SE B SE
Species 0.01 0.03 0.02 0.17 –0.11   0.19
Singletons 0.03 0.38 1.04 1.99 –5.14 12.06
ln N 0.05 0.37 –1.14 1.12   1.03   1.44
Evenness –5.34 6.22 –16.68 56.83 44.12 66.35
not with the fits of different models that predict these shapes. 
Fitting was done with the software RAD (Ulrich 2001). We 
used the sum of least squares of Euclidean distances of the 
data points from the fitted curve in Whittaker plots (Ulrich 
2001, Ollik 2008) and the χ2-statistic in Preston plots as 
measures of goodness of fit. Because model fitting often gives 
equivocal results and different models frequently fit nearly 
equally well (Wilson 1991, Magurran 2004, Ollik 2008) we 
ranked the fits of the three models for each data set and 
counted how often a model fitted best (1), intermediate (2) 
and worst (3). Thus we did not assess statistical significance 
of a particular model or shape. We rather infer whether a 
certain SAD is nearer to one or another shape.

Significant differences in model fit between our grouping 
variables were obtained from Yates corrected χ2-tests within 
ordinary contingency analysis (Everitt 1980) using the 3 3 3 
matrices of ranked model fits (3 models 3 3 ranks; Table 1). 
For the complete data sets we also used logistic regression to 
infer the possible influence of species richness, number of 
singletons, log-transformed number of individuals and even-
ness (measured by the slope of the Whittaker plot) on model 
fits (Whittaker plots: best vs worst). All probability levels 
were Bonferroni corrected to account for multiple testing. 

Results

For the complete data sets a contingency table analysis 
pointed to a significant difference in the frequency of fits 
(p(χ2) 5 0.003) between the three models (Table 1).  
The lognormal model most often fitted the complete sets 
(Whittaker plots: 44.5%, Preston plots: 50.4%) best, the 
logseries most often fitted worst in Whittaker plots (43.7%) 
and the power law most often worst in Preston plots (70.6%). 
The power law fitted the incomplete sets best (55.6%) in 
Whittaker plots (Table 1) and the logseries in Preston plots 
(49.4%). Irrespective of whether the data sets were complete 
or incomplete the lognormal fitted the biomass data sets  
for both plotting methods best (Table 1). Again in the  
Whittaker plots the logseries did worse than in Preston plots. 
For both plotting methods we also found highly significant 
differences in the pattern of fitting between the complete, 
the incomplete, and the biomass sets (all p(χ2) , 0.0001). 
The lognormal model fitted the biomass data sets signifi-
cantly more often than the complete and particularly  
than the incomplete sets (both p(χ2) , 0.001). Species rich-
ness, numbers of singletons, abundance, and evenness did 
not significantly influence model fits (Table 2) of the com-
plete and biomass data sets. In turn, fits of the lognormal  
to the incomplete sets improved with rising species richness 
and got worse (p(no change) , 0.01) at higher numbers  
of singletons and higher evenness (Table 2). Accordingly,  
the logseries fitted better at higher evenness and the power 
law fitted better at higher numbers of singletons (p(no 
change) , 0.01).

The type of plotting had significant influence on model 
fits of the power law and the logseries (Table 1). For com-
plete, incomplete and biomass data sets mean ranks of log-
series fits from Preston plots were significantly lower (better 
fits: p(χ2) , 0.001) and mean ranks of power law fits sig-
nificantly higher p(χ2) , 0.001) than from Whittaker plots. 
Fits of the lognormal were not significantly influenced by 
the plotting type (p(χ2) . 0.1). However only 44 of the 69 
communities that fitted in one of the plotting types best 
Table 1. Summary statistics of 558 species–abundance distributions 
each fitted by a lognormal, a logseries and a power law model. 
Given are numbers of ranks (best  1 to worst  3) of these fits for 
complete and incomplete data sets and for data sets based on esti-
mates of biomass. Highest numbers of best and worst fits are given 
in bold type.
Table 2. B-values and standard errors (SE) of logistic regressions to 
link fit to important community variables (estimated species rich-
ness, number of singletons, ln-transformed number of individuals, 
evenness). The best and the worst fits for 81 complete, 281 incom-
plete, and 24 biomass data sets for which the number of individuals 
was given served as dependent variable. Bonferroni corrected prob-
ability levels (p  0.01) in bold type. Note that negative B-values 
point to better fits at higher variable values.
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  Whittaker     Preston    

n Rank     Rank    

Model   1 2 3 1 2 3

Marine
Lognormal 10   1   5   4   3   5   2
Logseries 10   6   2   2   7   3   0
Power law 10   3   3   4   0   2   8

Freshwater
Lognormal 17   9   5   3   8   7   2
Logseries 17   4   7   6   7   9   1
Power law 17   4   5   8   2   1 14

Terrestrial
Lognormal 92 43 30 19 48 26 18
Logseries 92 20 28 44 32 48 12
Power law 92 29 34 29 12 18 62

  Whittaker Preston

n Rank     Rank    

Model   1 2 3 1 2 3

Africa
Lognormal 25 14   8 3 14   8   3
Logseries 25   5   8 12 10 15   0
Power law 25   6   9 10 1   2 22

Europe
Lognormal 65 29 26 10 36 21   8
Logseries 65 18 15 32 22 33 10
Power law 65 18 24 23   7 11 47

North America
Lognormal   7   4   1   2   2   2   3
Logseries   7   0   4   3   2   5   0
Power law   7   3   2   2   3   0   4

South America
Lognormal   9   3   2   4   3   2   4
Logseries   9   2   6   1   4   4   1
Power law   9   4   1   4   2   3   4

Australia
Lognormal 10   2   2   6   4   3   3
Logseries 10   4   3   3   5   3   2
Power law 10   4   5   1   1   4   5

Tropical
Lognormal 42 20 11 11 19 13 10
Logseries 42   7 18 17 16 24   2
Power law 42 15 13 14   7   5 30

Subtropical
Lognormal 13   5   4   4   7   3   3
Logseries 13   5   4   4   5   7   1
Power law 13   3   5   5   1   3   9

Temperate
Lognormal 63 27 25 11 32 22   9
Logseries 63 18 15 30 25 28 10
Power law 63 18 23 22   6 13 44
(63.8%) were jointly best fitted by the lognormal in Preston 
and in Whittaker plots.

Continent membership did not significantly influence the 
pattern of model fitting (Table 3) except possibly for South 
America, where the contingency analysis pointed to worse 
(p(χ2) , 0.05) fits of the lognormal model in Whittaker plots 
despite the low number of data sets. However, neither for Pres-
ton nor for Whittaker plots did the pattern of model fitting 
(Table 3) differ between temperate, tropical, and subtropical 
data sets (all pair wise p(χ2) . 0.1). In turn, the logseries fitted 
in the marine communities significantly better than in terres-
trial and freshwater communities (both p(χ2) , 0.05)  
(Table 4) while terrestrial and fresh water data sets did not 
differ (p(χ2) . 0.1) with respect to the pattern of model fit. 

Vertebrate and invertebrate communities were best fitted 
by the lognormal model (Table 5) irrespective of the type of 
4

plotting while the logseries fitted worst in Whittaker and the 
power law in Preston plots. In turn, the plant data deviated 
from this pattern and logseries (Preston plots) and power 
laws (Whittaker plots) fitted best, although this was statisti-
cally significant only for the invertebrate – plant comparison 
(p(χ2)  0.01). The spatial scale did not influence this pat-
tern (Table 6) because we did not find any significant differ-
ence (p(χ2)  0. 1) between data sets from metacommunities 
and lower (mostly local) scales. At both scales the lognormal 
model fitted best (Table 6) although the differences in model 
fit between the three models were weak at lower scales and 
statistically insignificant (p(χ2)  0.05).

Discussion

The major result of our study is that completely censused 
terrestrial or freshwater animal communities tend to follow 
lognormal type species–abundance distributions more often 
than logseries or power law types irrespective of species  
richness, spatial scale (Table 6), and geographic position 
(Table 3). However, plant and marine communities tend to 
deviate from this terrestrial pattern by more often following 
logseries (marine communities; Table 4) or power laws 
(plants; Table 5). 

On the other hand, our results do not point unequivocally 
to a specific shape that should apply to a certain type of com-
munity and might therefore serve as a general null model for 
studies of species abundances. In only a few cases did one of 
the three models in Table 1 and 3–6 fit more than 50% of the 
communities best. Also our results do not allow for a rejec-
tion of a certain shape and the associated models that predict 
them. Therefore we strongly call for a pluralistic way of deal-
ing with species abundances (McGill et al. 2007) and rather 
do not corroborate single models based on simple processes 
of niche division (Tokeshi 1993, 1996, 1999, Mouillot  
et al. 2000), fractal spatial geometry (Harte et al. 1999),  
statistical mechanics (Harte et al. 2008), or the central limit 
Table 3. Summary statistics for 106 (continent) and 118 (latitude) 
complete species–abundance distributions. Ranks and fits as in 
Table 1. Some of the 119 complete distributions could not be clas-
sified either being from Asia (2; best fits: logseries and power law) or 
marine (1; best fit: lognormal).
Table 4. Summary statistics for 119 complete species–abundance 
distributions sorted according to biome (marine, terrestrial, fresh 
water). Ranks and fits as in Table 1. 



  Whittaker     Preston    

n Rank     Rank    

Model   1 2 3 1 2 3

Invertebrates
Lognormal 59 29 21   9 31 22   6
Logseries 59 17 14 28 22 29   8
Power law 59 13 24 22   6   8 45

Vertebrates
Lognormal 40 19 12   9 23 10   7
Logseries 40   9 14 17 13 22   5
Power law 40 12 14 14   4   8 28

Plants
Lognormal 18   5   5   8   6   3   9
Logseries 18   3   9   6   8 10   0
Power law 18 10   4   4   4   5   9
theorem (May 1975, Šizling et al. 2009) that predict a single 
type of shape. 

Our results highlight the importance of distinguishing 
between fully censused and sampled communities in the 
study of SADs (Table 1, 2). Fully and incompletely censused 
communities significantly differed with regard to the best 
and worst fitting models. Additionally we found fits to the 
incomplete data sets to be affected by aggregate community 
properties like total species richness and evenness (Table 2). 
This dependence might severely bias model comparisons 
across communities. Particularly low coverage of the sample 
and higher evenness (similar abundances across species) 
proved to work against the lognormal. Because there were no 
such dependences in the fully censused communities good 
fits of logseries and power law SADs might simply be a  
statistical artifact. A similar conclusion has been drawn by 
Connolly et al. (2005) who found local coral and reef fish 
SADs to be fitted best by a truncated lognormal while fits by 
  Whittaker     Preston    

n Rank     Rank    

Model   1 2 3 1 2 3

Metacommunity
Lognormal 27 14   8   5 17   6   4
Logseries 27   4   9 14   6 17   4
Power law 27   9 10   8   4   4 19

Lower scale
Lognormal 92 39 32 21 43 31 18
Logseries 92 26 28 38 39 44   9
Power law 92 27 32 33 10 17 65
the logseries probably resulted from undersampling (the ‘veil 
effect’). Previous compilations (Hughes 1986, Dewdney 
2000) overlooked the distinction between complete and 
incomplete data sets and fitted models irrespective of the 
completeness of the data set. This resulted in a bias towards 
the logseries or similar shaped distributions (Hughes 1986, 
Dewdney 2000) due to a sampling artifact. Interestingly 
many theoretical treatises on SADs are discussing the ques-
tion of sample completeness in the context of Preston’s veil 
line (Preston 1960, reviewed in Magurran 2007) but did  
not mention the need to treat complete and incomplete data 
sets differentially with respect to model fits. It should be  
noted that a similar distinction exists within communities. 
Magurran and Henderson (2003), Ulrich and Ollik (2004) 
and Ulrich and Zalewski (2006) reported that SADs of the 
core (persistent) species of a community were best fitted by a 
lognormal while the satellite (transient) species that can be 
seen as a sample from a larger species pool rather followed 
logseries. 

Green and Plotkin (2007) studied the sample distribu-
tions of metacommunity SADs and showed aggregated  
spatial species distributions result in sample distributions 
that are skewed towards rare and common species. Similarly, 
models of species abundance based on ecological drift  
(Hubbell 2001, Chave 2004) predict logseries SADs of 
metacommunities at the regional scale and skewed lognor-
mal SADs at local scales if dispersal limitation leads to spatial 
autocorrelation (Chave 2004). Our metaanalysis does not 
directly address sample distributions. However, if local com-
munities are viewed as samples from the metacommunity we 
expect differences in shape between local and regional scales. 
Under a neutral framework we expect a trend towards  
lognormal distributions at local scales if spatial aggregation 
were a common phenomenon. Our results do not corrobo-
rate this prediction (Table 6). We could not find significant 
differences in the frequency of SAD shape between local and 
metacomunity scales (all p(χ2)  0.1). Our results rather 
imply that local SADs are downscaled versions of the respec-
tive metacommunity SADs as reported for corals and reef 
fishes by Connolly et al. (2005). Such shape preserving 
downscaling results under random sampling (Green and 
Plotkin (2007). Because individuals of most species occur 
aggregated the similar pattern for local and metacommunity 
SADs with its prevalence of the lognormal shape might indi-
cate that the local communities are not simple samples. We 
rather advocate a view that sees SADs at different spatial 
scales as being influenced by comparable ecological processes 
that result in similar shaped SADs. In fact, we agree with 
Connolly et al. (2005) that the preponderance of the lognor-
mal irrespective of spatial scale, and taxon indicates that the 
central limit theorem might be of greater importance than 
currently assumed by neutral theorists. 

Recently, the maximum entropy principle of statistical 
mechanics (Jaynes 1957) has become popular among ecol-
ogists as a tool for modeling species abundances and diver-
sity (Pueyo et al. 2007, Dewar and Porté 2008; but see 
Haegeman and Loreau 2008). Maximum entropy proved 
to be particularly prone to predict exponential distribu-
tions (Haegeman and Loreau 2008) and Harte et al. (2008) 
accordingly predicted a prevalence of logseries SADs at 
local and regional scales. Again, our results rather point to 
Table 5. Summary statistics for 117 complete species–abundance 
distributions sorted according to taxon (vertebrate, invertebrate, 
plant). Ranks and fits as in Table 1. Two data sets stem from protists 
and were best fitted by a logseries (Diatomeea) and the power law 
(Foraminifera).
Table 6. Summary statistics for 119 complete species–abundance 
distributions sorted according to spatial scale (metacommunity, 
lower scale). Ranks and fits as in Table 1. 
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lognormal SADs at both scales (Table 6) and therefore do 
not back up the use of maximum entropy to abundance 
distributions. 

Nekola et al. (2008) argued that the log-transformation 
used in Preston plots always results in modes of the histo-
gram. This would imply a bias towards lognormal fits to 
SADs irrespective of the true abundance distribution (Nekola 
and Brown 2007) and might even argue against the existence 
of the lognormal at all (Harte pers. comm.). Again our results 
do not corroborate this view. Indeed the plotting type strongly 
influenced model fit (Table 1). However, this affected mainly 
logseries and power laws. Preston plots favored fits of the log-
series and tended to discard power laws (Table 1). The log-
normal fitted Preston plots more often than Whittaker plots 
(Table 1). But this was statistically not significant. Neverthe-
less, Nekola et al. (2007) are surely right in arguing that any 
binning of data might potentially influence the shape of the 
SAD and therefore model fit. From our results we strongly 
advocate the use of raw data plots (like Whittaker plots) to fit 
SAD models and not the use of histograms of probability 
distributions that are based on some sort of grouping. This 
view has strong implications on model choice. Important 
models of relative abundance are based on statistical distribu-
tions, hence on binned data. Particularly the negative bino-
mial (Brian 1953), the logseries (Fisher et al. 1943), and the 
gamma (Ugland et al. 2007) distribution have been used to 
describe SADs but do not have simple translates into abun-
dance-rank order or other raw data plots. 

Our results corroborate recent findings by Connolly et al. 
(2005) and Morlon et al. (2009) that SADs obtained from 
biomass and/or resource use data are more lognormal  
than SADs obtained from abundance data (Table 1). In the 
Whittaker plots 78% of the biomass data sets but only 45% 
of the complete abundance data sets were best fitted by the 
lognormal. In turn, only five biomass data set was best fitted 
by the logseries. These findings contradict previous views 
that abundance and resource use are equivalent with respect 
to the shape of SAD distributions (Sugihara 1980, Taper and  
Marquet 1996). Such equivalence is expected if population 
biomass would scale linearly with population size (the energy 
equivalence rule, Damuth 1981). Any non-linear scaling as 
advocated by recent compilations (White et al. 2007) should 
influence the SAD shape if we switch from abundance to 
biomass and vice versa (Morlon et al. 2009). The fact that  
we observed a shift towards lognormal SADs when  
using biomass irrespective of taxon and habitat (Table 1) 
strongly points to a common mechanism that deserves  
further attention. 

Our meta-analysis was mainly concerned with the basic 
shapes of SADs. Therefore we did not try to identify a  
certain model that fits best. The SAD literature is full of 
different models (reviewed by Magurran 2004, McGill  
et al. 2007) that predict similar or even identical shapes and 
therefore prohibit any true model identification. In our view 
the identification and analysis of basic SAD shapes should 
be a first step towards a mechanistic approach to SADs. We 
need models that are based on basic ecological processes and 
that have parameters with clear ecological interpretation. 
Most models lack such an interpretation. Exceptions are 
neutral models (Hubbell 2001) where the parameters Θ and 
m are linked to dispersal and metacommunity size. Recently 
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Ugland et al. (2007) showed that the gamma distribution 
as a general description of the central limit theorem fits 
many observed SADs of different shape but needs only two 
ecological meaningful parameters, the species richness and 
the number of niche dimensions that influence abundance. 
Further studies have to identify these dimensions and to 
link them to environmental variables (Harte 2003).

Acknowledgements – Hazel Pearson kindly improved our 
English. MO received a university scholarship. This work 
was in part supported by grants from the Polish Ministry of 
Science (KBN, 3 P04F 034 22, 2 P04F 039 29).

References

Brian, M. V. 1953. Species frequencies in random samples from 
animal populations. – J. Anim. Ecol. 22: 57–64.

Burnham, K. P. and Overton, W. S. 1978. Estimation of the size of 
a closed population when capture probabilities vary among ani-
mals. – Biometrika 65: 623–633.

Connolly, S. R. et al. 2005. Community structure of corals and reef 
fish at multiple scales. – Science 309: 1363–1365.

Chave, J. 2004. Neutral theory and community ecology. – Ecol. 
Lett. 7: 241–253.

Chu, J. and Adami, C. 1999. A simple explanation for taxon  
abundance patterns. – Proc. Natl Acad. Sci. USA 96:  
15017–15019.

Damuth, J. 1981. Population density and body size in mammals. – 
Nature 290: 699–700.

Dewdney, A. K. 2000. A dynamical model of communities  
and a new species–abundance distribution. – Biol. Bull. 198: 
152–165.

Dewar, R. C. and Porté, A. 2008. Statistical mechanics unifies 
ecological patterns. – J. Theor. Biol. 251: 389–403.

Etienne, R. S. and Alonso, D. 2005. A dispersal-limited sampling 
theory for species and alleles. – Ecol. Lett. 8: 1147–1156.

Everitt, B. S. 1980. The analysis of contingency tables (2nd ed.). 
Monographs on Statistical and Applied Probability 45. – CRC 
Press.

Fisher, R. A. et al. 1943. The relation between the number of  
species and the number of individuals in a random sample of 
an animal population. – J. Anim. Ecol. 12: 42–58. 

Gray, J. S. 1979. Pollution-induced changes in populations. –  
Philos. Trans. R. Soc. Lond. B 286: 545–561.

Green, J. and Plotkin, J. B. 2007. A statistical theory for sampling 
species abundances. – Ecol. Lett. 10: 1037–1045.

Haegeman, B. and Loreau, M. 2008. Limitations of entropy maxi-
mization in ecology. – Oikos 117: 1700–1710.

Harte, J. 2003. Ecology: tail of death and resurrection. – Nature 
424: 1006–1007.

Harte, J. et al. 1999. Self-similarity in the distribution and abun-
dance of species. – Science 284: 334–336.

Harte, J. et al. 2008. Maximum entropy and the state-variable 
approach to macroecology. – Ecol. Monogr. 89: 2700–2711.

Hill, J. K. and Hamer, K. C. 2003. Using species abundance mod-
els as indicators of habitat disturbance in tropical forests. –  
J. Appl. Ecol. 35: 458–460. 

Hubbell, S. P. 2001. The unified theory of biogeography and biodi-
versity. – Princeton Univ. Press.

Hughes, R. G. 1986. Theories and models of species abundance. – 
Am. Nat. 128: 879–899.

Jaynes, E. T. 1957. Information theory and statistical mechanics. – 
Phys. Rev. 106: 620–630.

MacArthur, R. 1957. On the relative abundance of bird species. – 
Proc. Natl Acad. Sci. 43: 293–295.



Magurran, A. E. 2004. Measuring biological diversity. – Blackwell.
Magurran, E. A. 2007. Species abundance distribution over time. – 

Ecol. Lett. 10: 347–357.
Magurran, A. E. and Henderson, P. A. 2003. Explaining the excess 

of rare species in natural species abundance distributions. – 
Nature 422: 714–716.

May, R. M. 1975. Patterns of species abundance and diversity. – In: 
Cody, M. L. and Diamond, J. M. (eds.), Ecology and evolution 
of communities. Cambridge Univ. Press, pp. 81–120.

McGill, B. J. et al. 2007. Species abundance distributions: moving 
beyond single prediction theories to integration within an eco-
logical framework. – Ecol. Lett. 10: 995–1015.

Miller, R. I. and Wiegert, R. G. 1989. Documenting completeness, 
species-area relations, and the species-abundance distribution 
of the regional flora. – Ecology 70: 16–22.

Morlon, H. et al. 2009. Taking species abundance distributions 
beyond individuals. – Ecol. Lett. 12: 488–501.

Moulliot, D. et al. 2000. The fractal model: a new model to describe 
the species accumulation process and relative abundance distri-
bution (RAD). – Oikos 90: 333–342.

Nee, S. 2003. The unified phenomenological theory of biodiversity. – 
In: Blackburn, T. M. and Gaston, K. J. (eds), Macroecology: 
concepts and consequences. Blackwell, pp. 31–44.

Nekola, J. C. and Brown, J. H. 2007. The wealth of species: eco-
logical communities, complex systems, and the legacy of Frank 
Preston. – Ecol. Lett. 10: 188–196. 

Nekola, J. C. et al. 2008. Artifactions in the log-transformation of 
species abundance distributions. – Folia Geobot. 43: 259–268. 

Ollik, M. 2008. The shape of species abundance distributions: a 
meta-analysis. PhD thesis. – Univ. Toruń.

Patrick, R. 1963. The structure of diatom communities under vary-
ing ecological conditions. – Ann. N.Y. Acad. Sci. 108:  
359-365.

Preston, F. W. 1948. The commonness and rarity of species. – Ecol-
ogy 29: 254–283.

Preston, F. W. 1960. Time and space and the variation of species. – 
Ecology 41: 611–627.
Pueyo, S. 2006. Self-similarity in species–area relationship and in 
species–abundance distribution. – Oikos 112: 156–162.

Pueyo, S. et al. 2007. The maximum entropy formalism and the idio-
syncratic theory of biodiversity. – Ecol. Lett. 11: 1017–1028.

Raunkiaer, C. 1909. FormationsuntersÖgelseog formationsstatistik. 
– Bot. Tidsskr. 30: 20–132.

Šizling, A. L. et al. 2009. Species abundance distribution results 
from a spatial analogy of central limit theorem. – Proc. Natl 
Acad. Sci. USA 106: 6691–6695.

Sugihara, G. 1980. Minimal community structure: an explanation 
of species–abundance patterns. – Am. Nat. 116: 770–787.

Taper, M. L. and Marquet, P. A. 1996. How do species really divide 
resources? – Am. Nat. 147: 1072–1086.

Tokeshi, M. 1993. Species abundance patterns and community 
structure. – Adv. Ecol. Res. 24: 111–186.

Tokeshi, M. 1996. Power fraction: a new explanation of relative abun-
dance patterns in species-rich assemblages. – Oikos 75: 543–550.

Tokeshi, M. 1999. Species coexistence. – Blackwell.
Ugland, K. I. et al. 2007. Modelling dimensionality in species 

abundance distributions: description and evaluation of the 
Gambin model. – Evol. Ecol. Res. 9: 313–424. 

Ulrich, W. 2001. RAD - a FORTRAN program for the study of rela-
tive abundance distributions. – <www.uni.torun.pl/~ulrichw>.

Ulrich, W. and Ollik, M. 2003. The internet database of relative 
abundance distributions. – <www.uni.torun.pl/~ulrichw>.

Ulrich, W. and Ollik, M. 2004. Frequent and occasional species 
and the shape of relative abundance distributions. – Div. Distr. 
10: 263–269.

Ulrich, W. and Zalewski, M. 2006. Abundance and co-occurrence 
patterns of core and satellite species of ground beetles on small 
lake islands. – Oikos 114: 338–348.

White, E. P. et al. 2007. Relationships between body size and abun-
dance in ecology. – Trends Ecol. Evol. 22: 323–330.

Wilson, J. B. 1991. Methods for fitting dominance/diversity  
curves. – J. Veg. Sci. 2: 35–46.

Whittaker, R. H. 1965. Dominance and diversity in land plant 
communities. – Science 147: 250–260.
7


