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A B S T R A C T

Traditional volatility models do not work well when volatility changes rapidly and in the presence of outliers.
Therefore, two lines of improvements have been developed separately in the existing literature. Range-based
models benefit from efficient volatility estimates based on low and high prices, while robust methods deal
with outliers. We propose a range-based GARCH model with a bounded M-estimator, which combines these two
improvements with a third new improvement: a modified robust method, which adds elasticity in treating the
outliers. We apply this model to Bitcoin, Ethereum Classic, Ethereum, and Litecoin and find that it forecasts
variances, value at risk, and expected shortfall more accurately than the standard GARCH model, the standard
range-based GARCH model, and the GARCH model with the robust estimation. Utilization of high and low prices
joined with a novel treatment of outliers makes our model perform well during extreme periods when traditional
volatility models fail.

1. Introduction

The body of literature regarding cryptocurrencies is extensive. The
review papers Corbet et al. (2019), Kyriazis (2019), Merediz-Solà and
Bariviera (2019), Bariviera and Merediz-Solà (2021), Kayal and Rohilla
(2021), Almeida and Gonçalves (2022), Fang et al. (2022) cite several
hundred articles devoted to cryptocurrencies. One of the key research
topics in these papers is volatility models. Dozens of studies have been
dedicated to this issue. In most of them, various GARCH (generalized
autoregressive conditional heteroscedasticity) models have been
applied (see references in Corbet et al., 2019; Alexander and Dakos,
2020; Bariviera and Merediz-Solà, 2021; Almeida and Gonçalves, 2022;
Dudek et al., 2024). The importance of this topic stems from the fact that
volatility modeling is closely related to the estimation of risk. Volatility
forecasts can also be applied to the construction of portfolios, hedging,
and option pricing. On January 10, 2024, the U.S. Securities and Ex-
change Commission approved the launch of the first Bitcoin
exchange-traded funds. The introduction of these new instruments

increases investors’ interest in investment strategies in which crypto-
currency volatility forecasts can also be used.

So far, various studies have pointed to different models, and there is
no consensus among researchers regarding either the choice of the
appropriate form of the model or the accuracy of the volatility forecasts.
In this paper, we apply two promising approaches to forecast the vola-
tility of cryptocurrency returns, and based on both approaches, we
propose a new method. The two applied approaches are: robust esti-
mation methods and range-based volatility models.

A well-known empirical observation about cryptocurrency dynamics
is that there are periods of huge volatility. These periods are often
associated with the presence of outliers. Frequently reported reasons for
the occurrence of outliers include cybercrime, hacks, unsuccessful fork
attempts, and regulatory disorientation (Chaim and Laurini, 2018;
Corbet et al., 2019). Such events cause rapid price downswings. More-
over, cryptocurrencies exhibit explosive behaviors in multiple periods
when they achieve extraordinary value gains. (Bouri et al., 2019; Hall
and Jasiak, 2024). The effects of outliers on volatility modeling are
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wide-ranging. First, the standard GARCH models cease to fit to the time
series (Charles and Darné, 2019). Second, the volatility forecasts based
on the GARCH models become less accurate (Trucíos, 2019). Unfortu-
nately, the presence of outliers was considered in only a few papers
(Catania et al., 2018; Charles and Darné, 2019; Trucíos, 2019; Hung
et al., 2020; Catania and Grassi, 2022). In those papers, robust methods
were used to forecast volatility. Catania et al. (2018) and Catania and
Grassi (2022) applied the score-driven model with the generalized hy-
perbolic skew Student’s t-distribution. Trucíos (2019) used robust
methods for the GARCH model and the generalized autoregressive score
models. Hung et al. (2020) employed the realized GARCH model with
jump-robust realized measures. These papers showed that the forecasts
based on the robust methods were more accurate than those from the
standard GARCH models.

The second promising approach to model the volatility of returns is
to apply the range-based models. These models are built on the ranges or
range-based volatility estimators (for a detailed review of the range-
based volatility estimators, see Molnár, 2012). This means that in
addition to, or instead of, daily closing prices, they use daily high and
low prices. This increases the scope of applied information. At the same
time, such models do not require intraday data. Instead, the data needed
for estimation are commonly available for most financial assets. The
forecasts based on these models are usually more accurate than the
forecasts from the traditional models built on closing prices (e.g. Fis-
zeder and Perczak, 2016; Molnár, 2016; Xie, 2019; Fiszeder and Mał-
ecka, 2022; Wu and Wu, 2022; Fałdziński et al., 2024).

The range-based models have very rarely been used for modeling
cryptocurrencies. Tan et al. (2020) proposed the asymmetric bilinear
conditional autoregressive range (ABL-CARR) model for the
Garman-Klass estimator (Garman and Klass, 1980) and applied it to 102
cryptocurrencies to describe their volatility. Wu et al. (2020) introduced
the two-component CARR (CCARR) model and used it to forecast the
volatility of Bitcoin prices. Forecasts from this model were more accu-
rate than the ones from the return-based GARCH models.

To the best of our knowledge, the previous attempts to utilize the
range-based GARCH models to forecast volatility under extreme condi-
tions have never been used in combination with robust estimators. These
two lines of the research, each improving the effectiveness of variance
forecasting differently, were developed separately. Our paper fills this
gap by proposing an approach that links both.

This study has three main contributions. The first is to combine the
range-based volatility model with a robust estimation method and
suggest a new approach to model volatility. To this aim, we correct the
bounded M-estimator (BM-estimator) of Muler and Yohai (2008) and
use it for the RGARCHmodel of Molnár (2016). This correction includes
the adjustment of parameters of the robust method to the changed form
of the volatility equation and to the properties of the cryptocurrencies,
which contain periods of very high volatility with many outliers.
Combining the BM-estimator and RGARCH model brings significant
advantages over the existing methods. Through using low and high
prices, it introduces additional information about variability throughout
the day. However, simultaneously, it is not as sensitive to outliers as the
standard range-based models estimated with the use of the maximum
likelihood method. Our proposition is methodologically different from
the one suggested by Ke et al. (2021), who applied the robust minimum
distance estimator to the CARR model of Chou (2005).

Our second contribution is the modification of the propagation
mechanism of Muler and Yohai (2008), which restricts the effect of an
outlier on the estimated conditional variance. We suggest not limiting
the influence of such an outlier on the predetermined value, as done in
their procedure, but decreasing its influence proportionally. As a result
of this modification, the forecasts of volatility on the days directly
following the shock remain at a slightly increased level compared to
those based on the Muler and Yohai (2008) approach. This ensures
consistency with empirical observations of financial markets that after
very large daily price movements, volatility remains elevated for several

days.
The third contribution is to show that forecasts of volatility and risk

based on the proposed methods are more accurate than forecasts from
the following three benchmarks: the standard GARCH model, the stan-
dard range-based GARCH model, and the GARCH model with robust
estimation. We compare the empirical volatility forecast errors based on
both the proposed and the existing models for selected main crypto-
currencies. To formally evaluate the differences among the models, we
apply the test of equal conditional predictive ability by Giacomini and
White (2006) and the model confidence set (MCS) procedure developed
by Hansen et al. (2011). To gain further insight into the sources of
comparative advantages of the models, we use the decomposition of
Rossi and Sekhposyan (2011). We further present the application of the
volatility forecasts to calculate risk measures, value at risk (VaR), and
expected shortfall (ES). To evaluate the obtained risk forecasts, we use a
statistical testing procedure, which includes standard separate VaR and
ES tests and the encompassing test by Dimitriadis et al. (2023), where
VaR and ES forecasts are used simultaneously. To assess the utility of risk
forecasts in business practice, we apply the MCS procedure based on loss
functions proposed by Sarma et al. (2003) and Caporin (2008).

The remainder of the paper is structured as follows. Section 2 pro-
vides the theoretical background and introduces the proposed models
and estimation methods. In Section 3.1, the data are introduced and
described. Section 3.2 analyses the influence of the considered methods
on the values of the model parameters. In Section 3.3, the variance
forecasts are formulated and evaluated. Section 3.4 contains the
robustness check for various values of parameters used in the proposed
procedure. In Section 4, the forecasts of VaR and ES are presented and
evaluated. Conclusions are given in Section 5.

2. Theoretical background

2.1. Existing models and estimation methods

Let us assume that εt = h0.5t zt, where z1, z2,…, zT are i.i.d. random
variables with a continuous density f such that E(zt) = 0 and var(zt) = 1.
The standard GARCH (p, q) model introduced by Bollerslev (1986) can
be written as:

ht = α0 +
∑q

i=1
αiε2t− i +

∑p

j=1
βjht− j, (1)

where εt = rt − γ0, rt is the return, γ0 is the constant, ht is the conditional
variance. The usual restrictions are α0 > 0,αi ≥ 0, βj ≥ 0 (for i = 1,2,…,

q; j = 1, 2, …, p), however, non-negativity of the conditional variance
can also be ensured with weaker conditions (see Nelson and Cao, 1992).
A necessary and sufficient condition for strict stationarity of the process
εt with finite variance is α1+ …+ αq + β1 + …+ βp < 1.

This standard GARCH model is based only on closing prices, which
limits the efficiency of the resulting volatility estimates. More efficient
estimates of variance can be received from the range-based models. One
such model is the range GARCH model (RGARCH) by Molnár (2016). It
can be formulated as:

ht = α0 +
∑q

i=1
αiσ2

P t− i +
∑p

j=1
βjht− j, (2)

where σ2P t is the Parkinson estimator of variance (Parkinson, 1980).
This estimator is given as σ2Pt = [ln(Ht/Lt)]2/(4 ln 2), where Ht and Lt are
the high and low prices over a day, respectively. The parameter re-
strictions for this model are analogous to those of the standard GARCH
model.

The parameters of both the GARCH and RGARCH models are
commonly estimated by the maximum likelihood (ML) method. If we
assume that the distribution of zt is normal, then the log-likelihood
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function can be written as:

L(ς)= −

(
T
2

)

ln(2π) − 0.5
∑T

t=1

(

ln ht(ς)+
ε2t

ht(ς)

)

, (3)

where ς =
(
α0,α1,‥,αq, β1, β2,…, βp

)
is a vector containing unknown

parameters of the model, T is the number of daily observations used in
estimation. For the Student’s t-distribution of zt, the log-likelihood
function changes to:

L(ς)=T ln Γ
(
v+ 1
2

)

− T ln Γ
(v
2

)
−

(
T
2

)

ln(πv) − 0.5
∑T

t=1
ln ht(ς)

+ −

(
v+ 1
2

)
∑T

t=1
ln
(

1+
ε2t

vht(ς)

)

. (4)

It is commonly known that extremely large observations cannot be
explained by standard volatility models like the GARCH model, even
when heavy-tailed conditional distributions of an error term are
assumed (see, e.g., Franses and Ghijsels, 1999). More importantly, the
extreme observations affect the identification and estimation of the
GARCH models. Carnero et al. (2007), Catalán and Trívez (2007), Car-
nero et al. (2012), and Boudt et al. (2013) show that the presence of
outliers in GARCH processes results in biases on the maximum likeli-
hood parameter estimates as well as on the volatility estimates. If such
outliers are not treated adequately, they can considerably deteriorate
the forecasting accuracy (Catalán and Trívez, 2007; Trucíos and Hotta,
2015). A possible way to solve this problem is to apply robust estimation
methods. One of the most frequently used robust estimators of the
GARCH model parameters is the bounded M-estimator (BM) of Muler
and Yohai (2008).

To gain robustness, Muler and Yohai (2008) modified the GARCH
model by including a mechanism that restricts the propagation of the
outlier effect on the estimated conditional variance:

h*t,k =α0 +
∑q

i=1
αih*t− i,k sk

(
ε2t− i
/
h*t− i,k

)
+
∑p

j=1
βjh*t− j,k, (5)

where sk(u) =

{
u if u ≤ k,
k if u > k .

In this formula, sk serves as a robust filter, in which k is a chosen fixed
parameter responsible for the scale of filtering.

The robust filter in the procedure proposed by Muler and Yohai
(2008, MY procedure) is used together with the mechanism that limits
the impact of the outliers on the objective function. This procedure is
based on the transformation of ε2t and z2t : yt = ln

(
ε2t
)
andwt = ln

(
z2t
)
. If

the density f of zt is symmetric around 0, then the density of wt is given
by:

g(w)= f
(
ew/2

)
ew/2. (6)

In particular, when f is the N(0,1) distribution, then g = g0 has the
form:

g0(w)= (2π)− 0.5 e− 0.5(ew − w). (7)

The value of the density of g0 is further transformed by the ρ0 func-
tion: ρ0 = − ln

(
g0
)
. Finally, the values of ρ0 are used in the objective

functions M and M*:

M(ς)= −

(
T
2

)

ln(2π) + 1
T
∑T

t=1ρ(yt − ln ht(ς))
, (8)

M*(ς)= −

(
T
2

)

ln(2π) + 1
T
, (9)

where ρ = m(ρ0) and m is a bounded nondecreasing function. The BM
estimator is obtained by minimizing and comparing these objective

functions:

ς̂ =
{

ς̂1 if M(ς̂1) ≤ M*(ς̂2),
ς̂2 if M(ς̂1) > M*(ς̂2),

(10)

where ς̂1 = arg min
ς∈C

M(ς), ς̂2 = arg min
ς∈C

M*(ς) for some convenient

compact set C.
The m function in the above estimator is responsible for limiting the

influence of outliers. This function composed with ρ0 gives the ρ func-
tion. Muler and Yohai (2008) considered two BM estimators with the
following two ρ and m functions:

ρ1 =m1(ρ0), (11)

where m1(x) =

⎧
⎨

⎩

x
P(x)
4.15

if x ≤ a,
if a < x ≤ b,
if x > b,

P(x) = 2
(b− a)3

[
1
4
(
x4 − a4

)

−

(
1
3

)

(2a+b)
(
x3 − a3

)
+

(
1
2

)
(
a2+2ab

)(
x2 − a2

)
]

− 2a2b
(b− a)3

(x − a)−

1
3(b− a)− 2

(x − a)3 + x and a = 4 and b = a+ 0.3,

ρ2 =m2(ρ0), (12)

where m2(ν) = 0.8m1(ν /0.8).
The function m1 coincides with a fourth-order polynomial in the

interval [4,4.3]. It is a smoothed version of

m(x)=
{

x if x ≤ 4,
4 if x > 4. (13)

Muler and Yohai (2008) found in the Monte Carlo simulations that
the BM2 estimator (the estimator variant with the m2 function given in
equation (12)) is less efficient but more robust than the BM1 estimator
(the estimator variant with the m1 function given in equation (11)).
These two variants of the estimator, which depend on the choice be-
tween them1 andm2 functions, are applied by the authors with different
values of parameter k. For m1 they take k = 5.02 in equation (5). This
value is such that P

(
z2t < 5.02

)
= 0.975, when zt = εt/

̅̅̅̅
ht

√
is N(0,1) and,

consequently, z2t = ε2t /ht is χ21 distributed. For m2 they chose k = 2.71,
which is such that P

(
z2t < 2.71

)
= 0.90, under the same assumptions.

The GARCH model applied with the BM1 or BM2 estimator of Muler and
Yohai (2008) is denoted further as BM-GARCH.

2.2. New robust approach for volatility modeling

To gain robustness but simultaneously benefit from the advantages
of the range-based models, we suggest the application of the Muler and
Yohai (2008) BM-estimator to the RGARCH model. We denote the
RGARCH model applied with the BM estimator as BM-RGARCH. It has
the following form:

h*t,k = α0 +
∑q

i=1
αih*t− i,k sk

(
σ2

P t− i

/
h*t− i,k

)
+
∑p

j=1
βjh*t− j,k, (14)

where sk(u) =

{
u if u ≤ k,
k if u > k .

To make the application of the MY procedure feasible to the
RGARCH model and to the cryptocurrency time series, we make
parameter corrections. They pertain to the value of the k parameter in
the robust filter sk (see formula (14)) and to the threshold value a in the
m1 and m2 functions (see formulas (11) and (12)). These corrections
result for two reasons. Firstly, according to our calculations, the values
of k and a are not proper for cryptocurrencies, which leads to big fore-
casting errors. It follows from the fact that theoretical assumptions un-
derlying the derivation of these values by Muler and Yohai (2008) are
not suitable for cryptocurrencies, whose returns are more volatile and
have many more outliers than other financial assets. Secondly, in
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equation (14) we use σ2P t/ht instead of ε2t /ht (compare equation (5)). In
this way, we take advantage of the properties of the Parkinson estimator
of volatility σ2P t at time t, which is significantly more efficient than ε2t .
Distributions of σ2P t/ht and ε2t /ht are different and have different
properties. For these two reasons, we set new values to k and a. These
values are based on observed empirical distributions of
cryptocurrencies.

The values of the k parameter 2.71 and 5.02, considered by Muler
and Yohai (2008), correspond to quantiles of order 0.9 and 0.975 from
the χ21 distribution. These orders are valid when the distribution of
standardized returns zt is approximately normal. In the proposed
BM-RGARCH model, we set k to the empirical quintile of σ2P t/ ht , where
ht is calculated from formula (2). It means that we first estimate the
parameters of the RGARCH model and then calculate its conditional
variance. Next, we determine k and continue to estimate the proposed
model according to the procedure described in Section 2.1. For the sake
of comparability, we also replace the k parameter in the standard
BM-GARCH model with its empirical counterpart. In this case, we use
the empirical quantile of ε2t /ht, where ht is calculated from formula (1).
We implement formulas (1) and (2) in two variants of the error term
distribution: normal and Student’s t. We consider the range of orders
0.9, 0.95, 0.975, and 0.99, which includes the ones considered by Muler
and Yohai (2008). The empirical results, after averaging across the
analyzed cryptocurrencies,1 are given in Table 1.

For the probabilities 0.975 and 0.99, the values obtained from the
empirical distributions of cryptocurrencies differ significantly from
those used in the original MY procedure. For example, filtering in the
standard BM-GARCH models based on a quantile of order 0.975 implies
the parameter k above 6, while the original parameter from the theo-
retical distribution is 5.02. Filtering with the order of 0.99 would require
k exceeding 12, while the theoretical distribution indicates that k is
equal to 6.635. The empirical quantiles obtained for the proposed BM-
RGARCH model are lower than those obtained for the standard BM-
GARCH model. This fact is in line with our expectations, due to the
lower volatility of the distribution based on the Parkinson estimator of
variance σ2P t than that of the distribution based on the squared error
term ε2t .

Next to the k parameter of the robust filter, we consider the threshold
value a used in the m1 and m2 functions in the BM estimator (see
equations (11) and (12)). This value is responsible for changing the
shape of the m1 and m2 functions into flat lines. It prevents the objective
function from reacting sharply when outliers occur in the time series.
The change into a flat line goes gradually from the threshold value a. As

proposed byMuler and Yohai (2008), a is set to 4. This level corresponds
to the possible values of ρ0

(
yt − ln ht(ς)

)
(compare equation (8)), which

are substituted for the m1 and m2 functions. The values of ρ0
(
yt −

ln ht(ς)
)
that exceed 4 have limited influence on the objective functions.

The level of 4 may not be adequate for cryptocurrencies, whose distri-
butions exhibit larger volatility than other assets. To examine this, we
proceed similarly as in the case of parameter k. Namely, we use the
empirical cryptocurrency time series to evaluate the quantiles of ρ0

(
yt −

ln ht(ς)
)
. The chosen quantiles are then set as the threshold values a. We

consider the values corresponding to the quantile orders 0.975 and
0.99.2 The results, after averaging across the analyzed cryptocurren-
cies,3 are given in Table 2.

The values presented in Table 2 show that in the BM-GARCHmodels,
the choice of the threshold value a corresponding to the quantile of the
order 0.99 (which approximately follows the choice in the original MY
procedure) requires a higher value than 4, close to 6. As expected, the
threshold values corresponding to the same orders are lower for the
proposed BM-RGARCH models than for the standard BM-GARCH
models.

All considered values of parameters k and a, together with the choice
between the functions, m1 and m2, give a large number of parameter
combinations. We examined these combinations for the cryptocurren-
cies described in Section 3. Finally, we made a choice, considering both
the empirical forecasting error in the first in-sample period and the
recommendations from the study by Muler and Yohai (2008). In this
way, we set k corresponding to the order 0.975, a corresponding to the
order 0.99, and the loss function to m2. The order choices that we have
made are similar to those suggested in the original MY procedure.

The proposed parameter correction method in the MY procedure can
be used to analyze any time series. In our cryptocurrency study, the
determined parameters do not differ significantly between individual
cryptocurrencies. For this reason, we adopted average values of these
parameters in our research and we suggest using them directly in the MY
procedure (for the RGARCH model) in analyses of the cryptocurrency
market.

2.3. Robust volatility model with the proportional reduction of outlier
impact

The proposed BM-RGARCH model combines the form of the condi-
tional variance equation from the RGARCH model with the robust
estimation of GARCH parameters. So far, we have described corrections
that serve two purposes. First, they adjust the parameters of the robust
method to the modified volatility equation. Second, they adjust the joint

Table 1
Values of parameter k based on empirical quantiles vs theoretical χ21 quantiles.

Order Theoretical
χ21 quantiles

Values of k for BM-GARCH
models

Values of k for BM-
RGARCH models

Normal
distribution

Student’s t-
distribution

Normal
distribution

Student’s t-
distribution

0.900 2.706 2.277 2.199 2.230 1.966
0.950 3.841 3.937 3.813 3.619 3.263
0.975 5.024 6.622 6.498 5.842 5.295
0.990 6.635 12.686 12.672 9.344 8.472

Notes: The table presents possible values of the k parameter of the robust filter of
Muler and Yohai (2008). It confronts the values proposed originally (based on
the theoretical χ21 quantiles), and the ones based on estimates obtained from the
empirical cryptocurrency time series.

Table 2
Values of parameter a based on empirical quantiles.

Order Values of a for BM-GARCH models Values of a for BM-RGARCHmodels

Normal
distribution

Student’s t-
distribution

Normal
distribution

Student’s t-
distribution

0.975 3.285 3.232 2.958 2.733
0.990 5.992 5.985 4.474 4.087

Notes: The table presents possible values of the a parameter of the m function
used in the robust method of Muler and Yohai (2008). It shows the values based
on estimates obtained from the empirical cryptocurrency time series.

1 For the details of the empirical data, see Section 3.

2 Here, we do not consider quantiles of lower orders 0.9 and 0.95, which
would have stronger influence on the objective function. This is in line with the
paper by Muler and Yohai (2008), where the only used value of 4 roughly
corresponds to the order of 0.99.
3 For the details of the empirical data, see Section 3.
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approach to the properties of the cryptocurrency time series. In this
section, we suggest to add another feature to the proposed model. This
feature changes the propagation mechanism of Muler and Yohai (2008),
which restricts the effect of an outlier on the estimated conditional
variance. In financial markets, volatility remains elevated for several
days after very large daily price movements. To reflect this tendency, we
suggest not to limit the influence of outliers to the specified value (k in
equation (5)), as in the MY procedure, but decrease their influence
proportionally. To implement this, we propose the BM-RGARCH model
with a proportional cut, which we denote as BMpc-RGARCH:

h*t,k =α0 +
∑q

i=1
αih*t− i,k sk

(
σ2P t− i

/
h*t− i,k

)
+
∑p

j=1
βjh*t− j,k, (15)

where sk(u) =

{
u if u ≤ k,

max (0.3u, k) if u > k .

The value 0.3 of the proportionality ratio (hereinafter referred to as
the cut parameter) was chosen to minimize the empirical forecasting
error in the first in-sample period. This choice was based on the cryp-
tocurrency data described in Section 3. We check the robustness of the
cut parameter in Section 3.4. For other asset classes, it may need
adjustments.

To illustrate the above problem and our proposition empirically, we
use the ETC/USD data from May 2021. Cryptocurrencies plunged on
May 19, 2021, after the Chinese regulators announced a cryptocurrency
ban for banks and payment firms. Fig. 1 shows the presence of the outlier
manifesting itself in the volatility rise from 100 to 200 in the middle of
May to 1882.991 on May 19. This rise is followed by two days of highly
increased volatility, May 20 and May 21. The increased volatility is
observed until May 25, with a little drop on May 22. As indicated by the
black line, the forecasts from the standard RGARCHmodel react sharply
to the presence of the outlier. On the days directly after the shock, the
variance forecasts reach extreme levels, which makes them very over-
stated. The effect of the outlier seems to be long-lasting. The volatility
forecasts remain at the overstated levels even after the shock expires.
This negative, long-term effect of the outlier does not appear in forecasts
from the proposed robust RGARCH approach, i.e. from the BM-RGARCH
and BMpc-RGARCH models. The forecasts based on these models are
displayed with blue and green lines, respectively. For these models, the
forecasts do not adjust to the extreme level of the outlier from May 19.
This has the positive effect that the volatility in the following period is
not systematically overestimated. However, for the BM-RGARCHmodel,
the forecasts do not reflect the increased volatility on the days following
directly the shock. In this model, the mechanism that restricts the
propagation of the outlier effect does not depend on the outlier size. All
outliers are treated in the same way, even the most extreme ones, which
tend to influence the volatility forecasts in subsequent periods. The ef-
fect observed in the presented figure is that the forecasts from the model
on May 20 and 21 are understated. The proportionality ratio, introduced
in the BMpc-RGARCH model, offers additional elasticity. It reduces the
influence of the outlier proportionally to its size, allowing it to reflect its
effect on the subsequent days. This seems to be adequate for empirical
situations observed after large outliers in the past. At further distance
from the outlier, the forecasts from the BMpc-RGARCH model coincide
with those from the BM-RGARCH model. In contrast to the over-
estimated forecasts from the standard RGARCH model, the forecasts
from both BMmodels quickly come back to the level that is adequate for
the observed volatility.

2.4. Robust mean in the proposed BM-RGARCH and BMpc-RGARCH
models

The MY procedure, utilized in the proposed BM-RGARCH and BMpc-
RGARCH models, assumes that the constant in the mean equation is
equal to zero, i.e., γ0 = 0 (see equation (1)). This assumption may not
hold in practice, especially for cryptocurrencies, which have long

periods of a bull market. The long-term sample means suggest values
distant from zero. However, the sample mean is very sensitive to out-
liers. Therefore, a robust estimator of the mean is needed. We apply the
corrected robust reweighted mean estimator suggested by Boudt et al.
(2011). Thanks to the locality of the method, it has the advantage of
reducing over-detection of outliers at times of high volatility and
reducing under-detection in tranquil periods. The reweighted sample
mean is given as:

γ̂0 =

∑T

t=1
rtIt

∑T

t=1
It

, (16)

where It = I

[

(rt − mediant(rt))2

MAD2
t

≤ l

]

, I is the indicator function, MADt is the

median absolute deviation expressed as 1.483 mediani
( ⃒
⃒ri −

medianj
(
rj
)⃒
⃒
)
and l is the threshold value. Boudt et al. (2011) consider

various quantiles from the χ21 distribution as the candidate values for l.
Boudt et al. (2013), in their application to the robust GARCH estimation,
set l to the 0.95 quantile from the χ21 distribution.

We adjust the reweighted sample mean in two ways in order to match
the properties of the cryptocurrency time series. First, we investigate the
possible values of l, and second, we adjust the constant 1.483 in the MAD
function. The values of l taken from the χ21 distribution are suitable under
the approximate normality of the distribution of standardized returns.
This assumption is strongly violated for cryptocurrencies. Thus, instead
of the χ21 quantiles, we use the empirical quantiles of ε2t /ht presented in
Table 1. We follow the order choice of 0.95 suggested by Boudt et al.
(2013).

The constant 1.483 in the MAD measure is a scale factor that ensures
consistency with the standard normal distribution. This is inadequate in
the case of cryptocurrencies, whose distributions are far from normal. To
correct for this, we adjust the constant in the MAD function with the use
of the empirical cryptocurrency time series.4 To this end, we evaluate
the standardized residuals from the considered volatility models and set
the constants to such levels that the values of MAD reflect the volatility
of empirical distributions. The MAD constants based on the empirical
distributions, after averaging across all analyzed time series, are given in
Table 3. All obtained values fit in the range 2.136–2.177, regardless of
the models used to evaluate the residuals. Thus, as this constant seems
insensitive to the choice of the model, we decided to set it to the average
value of 2.163 in all models used in the empirical part.

To ensure the locality of the outlier detection, the reweighted sample
mean uses the mediant and MADt evaluated in the local windows. The
local window around each observation rt is [t − K /2, t + K /2]. This
window changes at the beginning and at the end of the sample in the
following way: for t < K/2, the interval changes to [1,K+1] and for t >
T − K/2, it takes the form [T − K,T]. Following Boudt et al. (2013), we set
K = 30. We use formula (16) to estimate the γ0 parameter for all applied
robust estimators in the empirical part.

3. Empirical study of volatility forecasts

3.1. Description of data

We apply the proposed and the competing methods to four crypto-
currency pairs: BTC/USD (Bitcoin), ETC/USD (Ethereum Classic), ETH/
USD (Ethereum), and LTC/USD (Litecoin). When selecting assets, we
take into account two criteria. The first criterion is connected with the
market microstructure issue. To avoid its impact on volatility estimates,
we choose heavily traded cryptocurrencies. The second criterion is

4 For the details of the empirical data, see Section 3.
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connected with the availability of the time series history. Its length must
be sufficient for statistical evaluation of forecasts. We use daily data for
building models and forecasts and intraday data to evaluate forecasts.
We aim to compare volatility models and methods constructed only on
daily data that are readily available. Therefore, during the estimation we
only allow the use of opening, closing, low and high prices.

We analyze data received directly from the crypto exchange, Kraken.
Data from coin-ranking sites can be questionable due to non-traded
prices, mistakes in time stamps, use of non-fiat cross-rates, and wash
trading (see Alexander and Dakos, 2020). Due to the differences in
liquidity, the starting points are different for various considered cryp-
tocurrencies. As the liquidity has been rising for all time series, we
choose to set the starting points at the beginning of the first month for
which the median of the number of transactions during a day is higher
than 1000. According to this condition, the data start from March 1,
2016, for BTC/USD; May 1, 2017, for ETC/USD; March 1, 2017, for
ETH/USD; and April 1, 2017, for LTC/USD. All series end on December
31,2021.5

We use log returns calculated as rt = 100 ln(Ct /Ot), where Ct and Ot
are daily closing and opening prices, respectively. Since the crypto-
currency market is open 24 h per day, there are no significant differences
between open-to-close returns and close-to-close returns, and the results
of our study are also valid for close-to-close returns. As a proxy of the
daily variance, which we use to evaluate the forecasts, we employ the
realized variance calculated as the sum of squares of the 5-min log
returns. We apply the realized variance because it is a significantly more
efficient estimator of the daily variance than the daily squared return or
range-based variance estimators. It is a common approach to use real-
ized variance in finance literature (see e.g., Floros et al., 2020;
Reschenhofer et al., 2020; Zhang et al., 2020; Kambouroudis et al.,
2021; Brini and Lenz, 2024). We apply high-frequency data only for the
evaluation of forecasts but not for the estimation of models. The reason

for such an approach is the desire to obtain robust methods based only
on daily data that are commonly available and can be easily applied. In
contrast, good quality high-frequency data are not always available,
especially for illiquid cryptocurrencies. Moreover, factors related to
market microstructure can significantly bias realized volatility.

Fig. 2 presents the series of prices, returns and realized variances of
all analyzed cryptocurrencies. Descriptive statistics of returns and real-
ized variances are given in Table 4.

The summary statistics show that average returns are positive and
relatively high for all cryptocurrencies. It was mainly caused by the bull
market in 2017, the second half of 2020, and the beginning of 2021. The
volatility of Bitcoin is clearly lower compared to other cryptocurrencies.
Huge outliers, both in returns and realized variances, are visible in
Fig. 2. Some of the biggest outliers occurred during the COVID-19
pandemic outbreak in March 2020 and the crash after the announce-
ment of the Chinese regulations banning banks and payment firms from
using cryptocurrencies in May 2021. It justifies the application of robust
methods of estimation. The distributions of almost all returns and real-
ized variances exhibit strong skewness and high kurtosis.

3.2. Parameter estimates in volatility models

First, we verify the existence of autocorrelation in returns of
analyzed cryptocurrencies. The results of the Ljung-Box test and values
of the autocorrelation coefficient of order one are presented in Table 5,
separately for the first estimation period (observations from 1 to 700)
and the forecast period (observations from 701 till the end of the sam-
ple).6 According to these results, autocorrelation is unstable in time and
is present only for BTC/USD and ETH/USD during the first estimation
period. For this reason, in the following parts, we assume the constant
conditional mean and describe only the time-varying conditional vola-
tility of returns.

Next, we check how the choice of the model influences the obtained

Fig. 1. Difference in the forecasting performance between the proposed robust volatility models after the presence of the outlier: ETC/USD, May 2021. Notes: The
picture presents the example of the variance forecasts from the three RGARCH models displayed on the right (standard, robust and robust with the proportional cut)
vs. the realized variance of the ETC/USD. Gray bars present realized variance estimated as the sum of the squared 5-min log returns. The realized variance from May
19, amounting to 1882.991, is cut at 1250 due to the size and clarity of the picture.

Table 3
MAD constants based on empirical standardized residuals vs standard normal-distribution-based constant.

Standard normal
distribution

BM-GARCH model residuals BM-RGARCH model residuals BMpc-RGARCH model residuals

Normal
distribution

Student’s t-
distribution

Normal
distribution

Student’s t-
distribution

Normal
distribution

Student’s t-
distribution

1.483 2.166 2.177 2.164 2.172 2.136 2.165

Notes: The table presents various values of the constant in the MAD measure used in the reweighted mean estimator of Boudt et al. (2011). These values are suited to
volatility estimates obtained from the empirical cryptocurrency time series.

5 The data is available at the following address: https://doi.org/10.181
50/LH0KS7. 6 The forecasting procedure and its results are given in Section 3.3.
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Fig. 2. Prices, returns, and realized variances of cryptocurrencies. Notes: The pictures present the prices (left panel), returns (middle panel) and realized volatilities
(right panel) of the cryptocurrencies used in the empirical part of the study. The realized volatility is estimated as the sum of squared of 5-min log returns.

Table 4
Descriptive statistics of cryptocurrency daily returns and realized variances.

Cryptocurrency Mean Minimum Maximum Standard deviation Skewness Excess kurtosis

Returns
BTC/USD 0.213 − 49.561 23.588 4.083 − 0.861 12.672
ETC/USD 0.081 − 53.802 53.302 6.678 0.189 9.715
ETH/USD 0.305 − 58.521 25.604 5.727 − 0.541 8.691
LTC/USD 0.168 − 48.035 37.801 6.197 0.043 7.455
Realized variances
BTC/USD 20.487 0.161 1108.260 44.234 11.034 203.330
ETC/USD 62.539 0.878 1882.992 118.840 7.177 78.323
ETH/USD 48.340 0.699 16971.550 412.201 39.282 1606.947
LTC/USD 49.945 0.965 1389.869 92.012 7.323 78.124

Notes: The table presents the basic summary statistics (displayed at the top) of the returns (top panel) and realized variances (bottom panel) of the cryptocurrencies
used in the empirical part of the study. The realized variance is estimated as the sum of squared 5-min log returns.
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parameter estimates. The term volatility model, as understood here,
includes the following elements: the form of the conditional mean and
variance equations, the distribution of the error term, and the estimator
type – whether it is the standardML or robust BM estimator. We focus on
the models that combine the RGARCH form with the BM estimator. In
this case, the BM estimator is applied both in the form proposed by MY
with suitable parameter corrections and in the novel form with the
proportional cut. We consider two distribution variants for each model:
the normal and Student’s t. The latter, heavy-tailed distribution, is ex-
pected to be useful for cryptocurrencies because it gives less weight to
larger innovations. As such, it can potentially mitigate the impact of
extreme observations. Finally, we apply ten volatility models7:

(1) the standard GARCH model (equation (1)) with the normal dis-
tribution and the ML estimator (denoted as GARCH-n),

(2) the GARCHmodel (equation (1)) with the Student’s t-distribution
and the ML estimator (denoted as GARCH-t),

(3) the RGARCH model (equation (2)) with the normal distribution
and the ML estimator (denoted as RGARCH-n),

(4) the RGARCH model (equation (2)) with the Student’s t-distribu-
tion and the ML estimator (denoted as RGARCH-t).

(5) the GARCH model (equation (5)) with the normal distribution
and the BM estimator (denoted as BM-GARCH-n),

(6) the GARCHmodel (equation (5)) with the Student’s t-distribution
and the BM estimator (denoted as BM-GARCH-t),

(7) the RGARCH model (equation (14)) with the normal distribution
and the corrected BM estimator (denoted as BM-RGARCH-n),

(8) the RGARCH model (equation (14)) with the Student’s t-distri-
bution and the corrected BM estimator (denoted as BM-RGARCH-
t),

(9) the RGARCH model (equation (15)) with the normal distribution
and the corrected BM estimator with a proportional cut (denoted
as BMpc-RGARCH-n),

(10) the RGARCH model (equation (15)) with the Student’s t-distri-
bution and the corrected BM estimator with a proportional cut
(denoted as BMpc-RGARCH-t).

We estimate the parameters of ten examined models for all consid-
ered cryptocurrencies for the whole sample of data. Both the GARCH
and RGARCH models are implemented with lags of order one, i.e., p =

1, q = 1 in equations ((1), (2), (5), (14) and (15). For models with the
standard ML method, the parameter γ0 is estimated jointly with other
parameters (equation (3) and (4)). For models with the BM estimators,
we apply the robust reweighted mean estimator given by formula (16).

We set k corresponding to the order 0.9 (see Table 1), a corresponding to
the order 0.99 (see Table 2) and the m function to m2. We also tried the
function m1 and the forecasting results were slightly worse than these
presented in the paper.8 We present the estimation results for ETC/USD
in Table 6. For the sake of brevity, we report estimated coefficients for
one currency pair only (ETC/USD) to illustrate the conclusions for the
sake of brevity. The conclusions regarding estimated parameters for
other investigated cryptocurrencies are similar and are available from
the authors upon request. Later in the paper, the main results related to
forecasting are presented for all investigated cryptocurrencies.

The results demonstrate large differences in the values of parameters
among the analyzed models. The values of parameter γ0 based on the ML
method, applied both to the basic GARCH and RGARCHmodels, are very
low and give a false impression about the means. Such low values are
contradictory to the summary statistics presented in Table 1. These
statistics suggest that the means of returns are positive and relatively
high. This is confirmed by the estimates received from the robust
reweighted mean estimator applied in all models with the BM method.

The application of the BM estimator decreases the values of param-
eters α0 and α1 compared to the usage of the MLmethod. The decrease of
parameter α1 is weaker for the BM-pc estimator in the RGARCH model
than that for the BM estimator. Parameter α0 is responsible for the
overall level of conditional volatility, while parameter α1 for the influ-
ence of the information from the previous period on the conditional
variance. The changes in these parameters may result from the reduction
of the outlier influence by the BM estimator. They suggest that the
presence of outliers promotes overestimation of α0 and α1 by the ML
method, which wrongly adjusts to the extreme volatility periods (similar
results were received by Ke et al., 2021, who applied the robust mini-
mum distance estimator for the CARR model of Chou, 2005).

Another tendency observed from Table 6 is the trade-off between α1
and β1, which is mainly visible when comparing the GARCH and
RGARCH models. It appears when comparing the standard GARCH
models with the RGARCH models and occurs again when comparing the
BM-GARCH models with the BMpc-RGARCH models. In these cases, the
values of the parameter α1 are much higher, and the values of the
parameter β1 are much lower for the RGARCH models compared with
the GARCH models. The explanation of this effect may boil down to the
fact that the Parkinson estimator of variance is less noisy than the
squared return. That is why more weight is put on the new information,

Table 5
The results of the autocorrelation test for daily standardized returns of analyzed
cryptocurrencies.

Cryptocurrency The first estimation period The forecast period

LB p-value ρ1 LB p-value ρ1

BTC/USD 0.035 0.111 0.300 − 0.028
ETC/USD 0.141 − 0.040 0.108 0.000
ETH/USD 0.011 0.053 0.284 − 0.044
LTC/USD 0.416 − 0.026 0.273 − 0.010

Notes: The LB p-value is the p-value of the Ljung-Box autocorrelation test with
the number of lags equal to the logarithm of the number of observations. ρ1 is the
value of the autocorrelation coefficient of order one.

Table 6
The results of parameter estimation for Ethereum Classic.

Model γ0 α0 α1 β1

GARCH-n 0.000* 2.254* 0.128* 0.829*
GARCH-t 0.000* 2.054* 0.175* 0.825*
RGARCH-n 0.000* 6.018* 0.284* 0.552*
RGARCH-t 0.002* 3.390* 0.283* 0.717*
BM-GARCH-n 0.059 0.865* 0.103* 0.844*
BM-GARCH-t 0.064 0.987* 0.110* 0.800*
BM-RGARCH-n 0.100 1.146* 0.089* 0.810*
BM-RGARCH-t 0.124 1.722* 0.155* 0.660*
BMpc-RGARCH-n 0.100 1.280* 0.160* 0.741*
BMpc-RGARCH-t 0.124 1.143* 0.195* 0.663*

Notes: The table presents the parameter estimates obtained from various GARCH
models (displayed on the left) fit to the ETC/USD time series. An asterisk * in-
dicates significance at the 5% level. For all models with BM estimators, the
γ0 parameter is calculated based on formula (16) and treated as a fixed value
when estimating other parameters, thus the significance for this parameter is not
reported.

7 In all presented models with the BM estimator we apply the m2 function
given in equation (12). We consider also additional six models with the m1

function given in equation (11) but the forecasts based on these models were
slightly less accurate. The results for the models with the m1 function are
available from the authors upon request.

8 To check the robustness of our results against the parameter choices, we
have also performed comparisons for several combinations of the parameters a,
k and the cut parameter. The results of this study are presented in Section 3.4.
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which translates into higher values of α1. This observation confirms the
findings reported in the literature for other financial assets (see e.g.
Molnár, 2016; Fiszeder et al., 2019).

3.3. Accuracy of volatility forecasts

This section compares the forecasting performance of the ten
considered models. We compute the out-of-sample one-day-ahead
forecasts of variance based on each of the models.9 The parameters of
each model are estimated based on a rolling window scheme with daily
parameter correction. We set the window size to 700 observations. As a
proxy of the daily variance, which we use for evaluating the forecasts,
we employ the realized variance calculated as the sum of squares of 5-
min returns. Very similar results are also received for realized vari-
ance calculated from 15-min returns. The forecasts are evaluated based
on two measures, namely the heteroscedasticity-adjusted mean squared
error (HMSE) and the heteroscedasticity-adjusted mean absolute error
(HMAE). These measures are chosen to take heteroskedasticity into ac-
count and, as a result, to make the forecast errors from periods of high
and low volatility comparable. The correction for heteroscedasticity is
especially important given the length of the examined time series and
the presence of multiple periods of highly increased volatility. The
HMSE loss function can be written as:

HMSE=
1
m
∑m

t=1

(

1 −
σ2F,t
σ2
R,t

)2

, (17)

where σ2R,t is the realized variance of returns and σ2F,t is the forecast of
variance of returns at time t, m is the number of forecasts.

The HMAE loss function is less sensitive to outliers, which is crucial
when evaluating extraordinary events. It is given as:

HMAE=
1
m
∑m

t=1

⃒
⃒
⃒
⃒
⃒
1 −

σ2
F,t

σ2
R,t

⃒
⃒
⃒
⃒
⃒
. (18)

The forecasting performance results are presented in Tables 7 and 8
for the HMSE and HMAE criteria, respectively. The forecast evaluation
periods are: January 31, 2018 to December 31, 2021 for BTC/USD; April
1, 2019 to December 31, 2021 for ETC/USD; January 30, 2019 to

December 31, 2021 for ETH/USD; and March 2, 2019 to December 31,
2021 for LTC/USD.

According to both criteria, all the forecasts based on robust methods
are more accurate than the forecasts from the models with the ML
estimator, regardless of whether we look at the basic GARCH or
RGARCH models. The approach suggested in this paper, based on the
application of corrected BM estimators to the RGARCH model, performs
better than the GARCH model with the BM estimator, i.e., the BM-
RGARCH-n and BMpc-RGARCH-n models are superior to BM-GARCH-
n while the BM-RGARCH-t and BMpc-RGARCH-t models are usually
better than BM-GARCH-t. For almost all cryptocurrencies, the lowest
values of the HMSE and HMAE measures are for BMpc-RGARCH-n,
which is the RGARCH model with the normal distribution combined
with the corrected BM estimator with a proportional cut. The one
exception is ETH for the HMSEmeasure, for which a slightly better result
is obtained by using the BMpc-RGARCH-t model.

To formally assess the relative performance of the considered
models, we apply the model confidence set (MCS) procedure developed
by Hansen et al. (2011) and the test of equal conditional predictive
ability by Giacomini and White (2006). The first of these procedures
determines the set of best models (superior set models, SSM) with a
given level of confidence. The results are given in Tables 7 and 8. Ac-
cording to HMSE and HMAE criteria, the only model that belongs to the
SSM for all cryptocurrencies is the BMpc-RGARCH-n. For BTC/USD and
ETC/USD, BMpc-RGARCH-n is the only model included in the superior
set models. For LTC/USD for the HMAE measure, the set of best models
includes the variants of the proposed model with and without propor-
tional cut: BMpc-RGARCH-n and BM-RGARCH-n, and for HMSE, addi-
tionally, the variant with the proportional cut and the Student’s
t-distribution, BMpc-RGARCH-t. All four BM-RGARCHmodels (with and
without proportional cut and with two variants of the error term dis-
tribution) are included in the SSM for ETH/USD. These results indicate
that the forecasts of variance based on the proposed approach to model
volatility are significantly more accurate than the forecasts from all
considered benchmarks. In all cases, the proposed combination of the
RGARCH specification with the robust estimation method gives better
results than other approaches. In most cases, the variant of this pro-
cedure with the proportional reduction of outlier impact significantly
dominates over the variant corresponding to the earlier methods, where
outliers are limited to a fixed level.

The Giacomini and White (2006) test compares the conditional
predictive ability of the four proposed models (the BM-RGARCH models
with or without the proportional cut and in two distributional variants)
to the relevant benchmark models. The results and the ratio of the loss
functions are presented in Tables 9 and 10. If the null hypothesis of equal
conditional predictive ability is rejected, then the loss ratio below one

Table 7
Evaluation of variance forecasts based on the HMSE measure.

Model BTC/USD ETC/USD ETH/USD LTC/USD

HMSE MCS p-value Rank HMSE MCS p-value Rank HMSE MCS p-value Rank HMSE MCS p-value Rank

GARCH-n 3.233 0.000  1.561 0.000  2.261 0.000  1.847 0.000 
GARCH-t 2.500 0.000  1.743 0.000  2.468 0.000  1.772 0.000 
RGARCH-n 3.137 0.000  1.395 0.000  2.074 0.000  1.789 0.000 
RGARCH-t 2.364 0.000  1.791 0.000  2.215 0.000  1.642 0.000 
BM-GARCH-n 1.368 0.000  0.732 0.000  1.161 0.001  0.965 0.000 
BM-GARCH-t 1.294 0.000  0.704 0.000  1.048 0.021  0.865 0.011 
BM-RGARCH-n 1.136 0.000  0.647 0.082  0.905 0.172* 4 0.763 0.215* 2
BM-RGARCH-t 1.289 0.000  0.678 0.000  0.906 0.181* 3 0.937 0.006 
BMpc-RGARCH-n 0.988 1.000* 1 0.632 1.000* 1 0.852 0.977* 2 0.744 1.000* 1
BMpc-RGARCH-t 1.108 0.000  0.664 0.007  0.851 1.000* 1 0.797 0.215* 3

Notes: The table presents the forecast errors, understood as HMSE, for the considered cryptocurrencies (displayed at the top) corresponding to various GARCH models
(displayed at the left). They are based on the squared difference between the forecast and the realized variance adjusted for heteroscedasticity. The realized variance is
used as a proxy of variance and estimated as the sum of squares of 5-min log returns. The lowest values of HMSE are marked in bold. Each forecast error is accompanied
by the p-value from the MCS test. The MCS test is performed jointly for all models. The symbol * indicates that the model belongs to the set of best models with a
confidence level of 0.90. The ranking is for models belonging to the set of best models.

9 To check the robustness of our results against the out-of-sample window
length, we have computed the seven-day-ahead forecasts and compared the
resulting forecasting errors among the considered models. The change in the
out-of-sample window length did not influence our main conclusions. For the
sake of brevity, we do not include these results in the paper. They are available
upon request from the authors.
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Table 8
Evaluation of variance forecasts based on the HMAE measure.

Model BTC/USD ETC/USD ETH/USD LTC/USD

HMAE MCS p-value Rank HMAE MCS p-value Rank HMAE MCS p-value Rank HMAE MCS p-value Rank

GARCH-n 1.764 0.000  0.959 0.000  1.409 0.000  1.138 0.000 
GARCH-t 1.493 0.000  1.107 0.000  1.622 0.000  1.139 0.000 
RGARCH-n 1.728 0.000  0.905 0.000  1.338 0.000  1.096 0.000 
RGARCH-t 1.509 0.000  1.212 0.000  1.489 0.000  1.074 0.000 
BM-GARCH-n 0.826 0.000  0.543 0.000  0.741 0.000  0.648 0.000 
BM-GARCH-t 0.783 0.000  0.531 0.001  0.679 0.003  0.602 0.000 
BM-RGARCH-n 0.696 0.002  0.513 0.027  0.613 0.203* 2 0.533 0.159* 2
BM-RGARCH-t 0.770 0.000  0.537 0.000  0.624 0.203* 3 0.612 0.000 
BMpc-RGARCH-n 0.661 1.000* 1 0.501 1.000* 1 0.601 1.000* 1 0.524 1.000* 1
BMpc-RGARCH-t 0.718 0.000  0.528 0.000  0.631 0.105* 4 0.564 0.007 

Notes: The table presents the forecast errors, understood as HMAE, for the considered cryptocurrencies (displayed at the top) corresponding to various GARCH models
(displayed at the left). They are based on the absolute difference between the forecast and the realized variance adjusted for heteroscedasticity. The realized variance is
used as a proxy of variance and estimated as the sum of squares of 5-min log returns. The lowest values of HMAE are marked in bold. Each forecast error is accompanied
by the p-value from the MCS test. The MCS test is performed jointly for all models. The symbol * indicates that the model belongs to the set of best models with a
confidence level of 0.90. The ranking is for models belonging to the set of best models.

Table 9
Giacomini and White test (2006) results based on the HMSE measure.

Model BTC/USD ETC/USD ETH/USD LTC/USD

Loss ratio P-value Loss ratio P-value Loss ratio P-value Loss ratio P-value

Proposed model BM-RGARCH-n
GARCH-n 0.124 0.000 0.172 0.000 0.160 0.000 0.469 0.000
RGARCH-n 0.131 0.000 0.216 0.000 0.191 0.000 0.486 0.000
BM-GARCH-n 0.690 0.000 0.782 0.000 0.608 0.000 0.822 0.000
Proposed model BM-RGARCH-t
GARCH-t 0.266 0.000 0.151 0.000 0.135 0.000 0.537 0.000
RGARCH-t 0.297 0.000 0.144 0.000 0.167 0.000 0.570 0.000
BM-GARCH-t 0.993 0.461 0.928 0.069 0.747 0.001 1.017 0.720
Proposed model BMpc-RGARCH-n
GARCH-n 0.093 0.000 0.164 0.000 0.142 0.000 0.461 0.000
RGARCH-n 0.099 0.000 0.205 0.000 0.169 0.000 0.478 0.000
BM-GARCH-n 0.522 0.000 0.744 0.000 0.539 0.000 0.808 0.000
Proposed model BMpc-RGARCH-t
GARCH-t 0.196 0.000 0.145 0.000 0.119 0.000 0.495 0.000
RGARCH-t 0.220 0.000 0.137 0.000 0.148 0.000 0.525 0.000
BM-GARCH-t 0.733 0.001 0.889 0.020 0.660 0.000 0.937 0.003

Notes: The table presents the loss ratio between the HMAE of the proposed model (displayed at the top) and the benchmark model (displayed at the left) and the p-
values of the Giacomini andWhite (2006) test for the considered cryptocurrencies. If the null hypothesis of equal conditional predictive ability is rejected, then the loss
ratio below one implies a significant reduction of the forecast loss gained from the proposed model in relation to the benchmark one.

Table 10
Giacomini and White (2006) test results based on the HMAE measure.

Model BTC/USD ETC/USD ETH/USD LTC/USD

Loss ratio P-value Loss ratio P-value Loss ratio P-value Loss ratio P-value

Proposed model BM-RGARCH-n
GARCH-n 0.395 0.000 0.535 0.000 0.435 0.000 0.469 0.000
RGARCH-n 0.403 0.000 0.567 0.000 0.458 0.000 0.486 0.000
BM-GARCH-n 0.842 0.000 0.945 0.004 0.827 0.000 0.822 0.000
Proposed model BM-RGARCH-t
GARCH-t 0.516 0.000 0.485 0.000 0.385 0.000 0.537 0.000
RGARCH-t 0.510 0.000 0.443 0.000 0.419 0.000 0.570 0.000
BM-GARCH-t 0.983 0.165 1.010 0.718 0.919 0.000 1.017 0.720
Proposed model BMpc-RGARCH-n
GARCH-n 0.374 0.000 0.522 0.000 0.426 0.000 0.461 0.000
RGARCH-n 0.382 0.000 0.554 0.000 0.449 0.000 0.478 0.000
BM-GARCH-n 0.799 0.000 0.923 0.000 0.811 0.000 0.808 0.000
Proposed model BMpc-RGARCH-t
GARCH-t 0.481 0.000 0.477 0.000 0.389 0.000 0.495 0.000
RGARCH-t 0.476 0.000 0.436 0.000 0.424 0.000 0.525 0.000
BM-GARCH-t 0.916 0.000 0.994 0.367 0.930 0.004 0.937 0.003

Notes: The table presents the loss ratio between the HMAE of the proposed model (displayed at the top) and the benchmark model (displayed at the left), and the p-
values of the Giacomini andWhite (2006) test for the considered cryptocurrencies. If the null hypothesis of equal conditional predictive ability is rejected, then the loss
ratio below one implies a significant reduction of the forecast loss gained from the proposed model in relation to the benchmark one.
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implies a significant reduction of the forecast loss gained from the
proposed model in relation to the benchmark one. The results confirm
significant differences in forecasting performance for nearly all
compared pairs of models. They indicate better forecasting performance
of the proposed models than the benchmark ones. The only exceptions
are observed for the BM-RGARCH-t models (or their variants with the
proportional cut) compared to the relevant BM-GARCH-t models.

To gain further insight into the forecasting performance and the
sources of advantages of the proposedmodels, we use the decomposition
of Rossi and Sekhposyan (2011). It assigns the differences in forecasting
performance to three components: time variation, predictive content,
and over-fitting. The first component measures the presence of time
variation in the models’ performances relative to their average perfor-
mances. Predictive content is based on the correlation between the
in-sample and out-of-sample measures of fit. It represents the models’
out-of-sample relative forecastability reflected in the in-sample relative
performance. Over-fitting represents the situation when a model fits
well in-sample but loses predictive ability out of sample. The results,
based on the loss differences between the proposed and competing
models, are presented in Tables 11 and 12. The tables give the p-values
of the Rossi and Sekhposyan (2011) test conducted for the three com-
ponents. They show that all the components contribute significantly to
the observed better predictive ability of the proposed models. The tests
for the first component reject the null of no time variation, which means
there are differences between the proposed and benchmark models in
their ability to forecast volatility over long periods. The tests for the
second component show that the in-sample losses of the proposed
models provide a better explanation of the out-of-sample losses than
those of the benchmark models. The tests for the third component report
significant differences in over-fitting, which means that the proportion
of the out-of-sample losses that cannot be explained by the in-sample
losses is different for the proposed and benchmark models.

3.4. Robustness check

In our proposed procedure, the parameters are determined from
empirical quantiles. In this section, we check whether the values of the k
and the a parameters significantly influence the estimation and fore-
casting results. For this purpose, we estimate the parameters of all
models with robust estimators for various values of a and k, corre-
sponding to the quantile orders considered in previous sections. Simi-
larly to Section 3.2, we illustrate the estimation results for ETC/USD.

These results are given in Table 13. The main conclusions presented in
Section 3.2 hold for other quantile orders. First, regardless of the
parameter choice, the γ0 parameter in all BM models is clearly higher
than in standard GARCH models estimated by the ML method. Second,
applying the BM estimator usually decreases the values of parameters α0
and α1 compared to the values of these parameters obtained by the ML
method. It holds for all obtained values of α0 and almost all of α1. Third,
the changes in the α1 and the β1 parameters, comparing the BM-GARCH
models with the BMpc-RGARCH models, are also visible.

We also check whether the forecasting performance of our models
deteriorates when we change the values of the k and a parameters. The
forecasting results for various quantile orders used for the calculation of
the k and the a parameters are given in Tables 14 and 15, respectively,
for HMSE and HMAE loss functions.

In the vast majority of cases, the lowest values of the HMSE and
HMAE measures are for BMpc-RGARCH-n, which is the RGARCH model
with the normal distribution combined with the corrected BM estimator
with a proportional cut. In other cases, the same model with Student’s t-
distribution of the error term is the best. It means that the main
conclusion of this study about the superiority of the suggested modeling
approach remains valid for other values of quantile orders used for the
calculation of the k and a parameters.

We also evaluate the forecasting performance of BMpc-RGARCH
models for various values of the cut parameter. The results are pre-
sented in Tables 16 and 17, respectively, for the HMSE and HMAE
criteria.

The results obtained for various values of the cut parameter in the
BMpc-RGARCHmodels show that the forecast evaluation remains stable
with changes in this parameter. Often, other values than 0.3 lead to even
lower forecasting errors. This means that the forecasting conclusions are
robust to the values of the cut parameter.

4. Empirical application to forecasting value at risk and
expected shortfall

Accurate volatility forecasts are important because these forecasts
are used to evaluate risk exposures. Two fundamental risk measures in
today’s finance are VaR and ES. Thus, in this section, we apply the ob-
tained variance forecasts to produce VaR and ES predictions. To calcu-
late VaR and ES, we use three approaches: parametric, semiparametric,
and nonparametric. The risk forecasts are computed based on the same
data and evaluated for the same periods as volatility forecasts: January

Table 11
Rossi and Sekhposyan (2011) test results based on the HMSE measure.

Model Time variation in forecasting performance Predictive content Over-fitting

BTC/USD ETC/USD ETH/USD LTC/USD BTC/USD ETC/USD ETH/USD LTC/USD BTC/USD ETC/USD ETH/USD LTC/USD

Proposed model BM-RGARCH-n
GARCH-n 0.004 0.350 0.002 0.009 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.001
RGARCH-n 0.002 0.329 0.005 0.005 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
BM-GARCH-n 0.045 0.481 0.001 0.015 0.000 0.009 0.000 0.000 0.002 0.106 0.000 0.002
Proposed model BM-RGARCH-t
GARCH-t 0.054 0.212 0.000 0.003 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001
RGARCH-t 0.000 0.670 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BM-GARCH-t 0.783 0.656 0.002 0.220 0.834 0.292 0.015 0.373 1.000 0.494 0.060 0.461
Proposed model BMpc-RGARCH-n
GARCH-n 0.004 0.381 0.002 0.014 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001
RGARCH-n 0.002 0.341 0.006 0.006 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
BM-GARCH-n 0.002 0.808 0.013 0.095 0.000 0.001 0.000 0.000 0.001 0.052 0.000 0.001
Proposed model BMpc-RGARCH-t
GARCH-t 0.017 0.214 0.000 0.005 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
RGARCH-t 0.000 0.677 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BM-GARCH-t 0.350 0.751 0.003 0.055 0.017 0.145 0.007 0.122 0.080 0.315 0.023 0.347

Notes: The table presents the p-values of the Rossi and Sekhposyan (2011) test for the considered cryptocurrencies. The test is based on the difference in the HMSE loss
function between the proposed model (displayed at the top) and the benchmark GARCH model (displayed at the left). The test is conducted for the three components,
which explain potential sources of advantages of the proposed models: time variation in forecasting performance (left panel), predictive content (middle panel), and
over-fitting (right panel).

P. Fiszeder et al. Economic Modelling 141 (2024) 106887 

11 



31, 2018 to December 31, 2021 for BTC/USD; April 1, 2019 to December
31, 2021 for ETC/USD; January 30, 2019 to December 31, 2021 for
ETH/USD; and March 2, 2019 to December 31, 2021 for LTC/USD.

We compute the out-of-sample one-day-ahead 1% VaR and 1% ES
forecasts based on the rolling window procedure. The following equa-
tions define VaR and ES:

P
(
rt <VaRt

α(rt)
)
=α, (19)

EStα(rt)= E
(
rt
⃒
⃒rt <VaRt

α(rt)
)
, (20)

where α is the VaR level. These formulas show that VaR and ES are the
quantile and the conditional expectation of the return distribution (on

Table 12
Rossi and Sekhposyan (2011) test results based on the HMAE measure.

Model Time variation in forecasting performance Predictive content Over-fitting

BTC/USD ETC/USD ETH/USD LTC/USD BTC/USD ETC/USD ETH/USD LTC/USD BTC/USD ETC/USD ETH/USD LTC/USD

Proposed model BM-RGARCH-n
GARCH-n 0.000 0.217 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RGARCH-n 0.000 0.134 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BM-GARCH-n 0.005 0.594 0.000 0.002 0.000 0.045 0.000 0.000 0.001 0.141 0.002 0.003
Proposed model BM-RGARCH-t
GARCH-t 0.013 0.474 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RGARCH-t 0.000 0.501 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BM-GARCH-t 0.190 0.128 0.001 0.005 0.511 0.616 0.037 0.713 0.805 0.771 0.244 0.832
Proposed model BMpc-RGARCH-n
GARCH-n 0.000 0.255 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RGARCH-n 0.000 0.174 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BM-GARCH-n 0.000 0.453 0.029 0.037 0.000 0.003 0.000 0.000 0.001 0.030 0.001 0.001
Proposed model BMpc-RGARCH-t
GARCH-t 0.002 0.519 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RGARCH-t 0.000 0.502 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BM-GARCH-t 0.393 0.253 0.000 0.039 0.007 0.680 0.112 0.072 0.120 0.888 0.255 0.291

Notes: The table presents the p-values of the Rossi and Sekhposyan (2011) test for the considered cryptocurrencies. The test is based on the difference in the HMSE loss
function between the proposed model (displayed at the top) and the benchmark GARCH model (displayed at the left). The test is conducted for the three components,
which explain potential sources of advantages of the proposed models: time variation in forecasting performance (left panel), predictive content (middle panel), and
over-fitting (right panel).

Table 13
The results of the parameter estimation for Ethereum Classic for various quantile orders used for the calculation of k and a parameters.

Model Order of a

0.975 0.99

Order of k Order of k

0.9 0.95 0.975 0.99 0.9 0.95 0.975 0.99

γ0
BM-GARCH-n 0.059 0.080 0.142 0.071 0.059 0.080 0.142 0.071
BM-GARCH-t 0.064 0.074 0.142 0.071 0.064 0.074 0.142 0.071
BM-RGARCH-n 0.100 0.072 0.141 0.093 0.100 0.072 0.141 0.093
BM-RGARCH-t 0.124 0.063 0.113 0.107 0.124 0.063 0.113 0.107
BMpc-RGARCH-n 0.100 0.072 0.141 0.093 0.100 0.072 0.141 0.093
BMpc-RGARCH-t 0.124 0.063 0.113 0.107 0.124 0.063 0.113 0.107
α0
BM-GARCH-n 1.127 1.071 1.110 0.823 0.865 1.152 1.120 1.156
BM-GARCH-t 0.601 0.621 0.612 0.624 0.987 1.085 0.997 1.064
BM-RGARCH-n 0.300 0.296 0.302 0.298 1.146 0.611 0.580 0.622
BM-RGARCH-t 2.184 2.188 2.203 2.213 1.722 0.616 0.449 0.447
BMpc-RGARCH-n 1.439 0.912 0.455 0.436 1.280 1.484 2.188 0.876
BMpc-RGARCH-t 1.460 1.183 2.284 1.616 1.143 0.894 0.702 0.508
α1
BM-GARCH-n 0.101 0.097 0.102 0.087 0.103 0.122 0.120 0.122
BM-GARCH-t 0.101 0.102 0.099 0.102 0.110 0.127 0.118 0.126
BM-RGARCH-n 0.077 0.076 0.077 0.076 0.089 0.058 0.056 0.058
BM-RGARCH-t 0.166 0.166 0.164 0.164 0.155 0.091 0.062 0.063
BMpc-RGARCH-n 0.128 0.183 0.128 0.100 0.160 0.179 0.225 0.094
BMpc-RGARCH-t 0.464 0.302 0.231 0.100 0.195 0.230 0.170 0.113
β1
BM-GARCH-n 0.795 0.805 0.794 0.832 0.844 0.800 0.803 0.800
BM-GARCH-t 0.814 0.813 0.816 0.813 0.800 0.772 0.789 0.775
BM-RGARCH-n 0.823 0.825 0.824 0.824 0.810 0.868 0.874 0.867
BM-RGARCH-t 0.595 0.595 0.597 0.596 0.660 0.797 0.860 0.859
BMpc-RGARCH-n 0.647 0.663 0.751 0.782 0.741 0.692 0.587 0.805
BMpc-RGARCH-t 0.427 0.538 0.543 0.791 0.663 0.650 0.707 0.786

Notes: The table presents the parameter estimates obtained from various GARCH models with the BM estimators (displayed at the left) fit to the ETC/USD time series.
An asterisk * indicates significance at the 5% level. The γ0 parameter is calculated based on formula (16) and treated as a fixed value when estimating other parameters.
Thus, the significance for this parameter is not reported.
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condition that the return is below VaR), respectively. Their forecasts are
obtained from the formulas:

V̂aR
t
α(rt+1)= γ̂0 + ĥt+1⋅V̂aR

t
α(zt+1), (21)

ÊS
t
α(rt+1)= γ̂0 + ĥt+1⋅ÊS

t
α(zt+1). (22)

The mean γ̂0 and the variance ĥt+1 predictions in formulas (21) and
(22) come from all considered models. To calculate the predictions of

the quantile V̂aR
t
α(zt+1) and the conditional expectation ÊS

t
α(zt+1), we

apply two approaches. In the first approach, these quantities are deter-
mined by the adopted conditional theoretical distribution (normal or
Student’s t). In the second approach, called filtered historical simula-

tion, the predictions V̂aR
t
α(zt+1) and ÊS

t
α(zt+1) are estimated by the his-

torical simulation method for standardized zt+1 variables. The second
approach is semiparametric because it combines the parametric esti-
mation of mean and variance and the nonparametric estimation of
quantile and conditional expectation. Both approaches are commonly
used in the literature (see e.g. Ghorbel and Trabelsi, 2014; Louzis et al.,
2014; Zhou, 2014; Nolde and Ziegel, 2017; Shen, 2018; Patton et al.,
2019; Taylor, 2019; Francq and Zakoïan, 2020; Bei et al., 2023; Müller
et al., 2023). To obtain additional benchmark for evaluating the pro-
posed models, we also compute VaR and ES forecasts by the simple
historical simulation (HS) method, which represents the fully nonpara-
metric approach. In the HS method, we directly refer to formulas (19)
and (20).

To evaluate the obtained risk forecasts, we first use a statistical
testing procedure and then, to assess the utility of these forecasts in
business practice, we apply loss functions and compute the Basel capital
charges. The statistical testing procedure includes standard separate

VaR and ES tests as well as the encompassing test, where VaR and ES
forecasts are used simultaneously. The initial, separate VaR testing is
done to check two basic criteria. The first is the unconditional coverage
criterion, which verifies whether the overall number of VaR exceedances
matches the assumed VaR level. In line with the mainstream approach,
we check this criterion using the Kupiec test (Kupiec, 1995). The other
VaR evaluation criterion is conditional coverage, which additionally
verifies the independence among VaR residuals. We check this criterion
by two statistical tests that utilize two different approaches. The first test
is the generalized Markov test (Pajhede, 2017), which operates on
checking the Markov property in the VaR exceedance process. It is a
generalization of the popular Christoffersen’s Markov test (Chris-
toffersen, 1998).

The second conditional coverage VaR test is the corrected geometric
test (Malecka, 2022), which works on durations among VaR exceed-
ances and the properties of the geometric distribution. This test utilizes
the corrected asymptotic distribution applied to the geometric test sta-
tistic proposed to test VaR by Berkowitz et al. (2011). The evaluation of
ES forecasts is done with two tests. The first of them utilizes the popular
residual-based statistic developed by McNeil and Frey (2000), which we
denote U. The second ES test, denoted UES, uses the
ES-prediction-corrected variables instead of the residuals (Małecka,
2020). In both ES tests, we use one-sided p-values. Finally, we use the
encompassing test by Dimitriadis et al. (2023), to simultaneously test
VaR and ES forecasts from the proposed model against those from the
standard models.

The evaluation procedure described above is conducted for the risk
forecasts coming from all approaches: parametric, semiparametric
filtered historical simulation and nonparametric historical simulation.
Here, we present the results from the semiparametric method, which
performs best according to the statistical tests. The results from the fully

Table 14
Evaluation of variance forecasts based on the HMSE measures for various quantile orders used for the calculation of k and a parameters.

Model Order of a

0.975 0.99

Order of k Order of k

0.9 0.95 0.975 0.99 0.9 0.95 0.975 0.99

BTC
BM-GARCH-n 0.993 1.023 0.997 0.998 1.368 1.366 1.363 1.361
BM-GARCH-t 1.317 1.313 1.287 1.287 1.294 1.272 1.277 1.282
BM-RGARCH-n 0.951 0.951 0.951 0.950 1.136 1.129 1.134 1.136
BM-RGARCH-t 1.435 1.461 1.422 1.418 1.289 1.296 1.297 1.296
BMpc-RGARCH-n 0.904 0.813 0.763 0.741 0.988 0.972 0.939 0.953
BMpc-RGARCH-t 1.398 1.261 1.148 1.208 1.108 1.053 1.045 1.050
ETC
BM-GARCH-n 0.656 0.653 0.655 0.656 0.732 0.725 0.723 0.726
BM-GARCH-t 0.703 0.730 0.739 0.747 0.704 0.702 0.706 0.703
BM-RGARCH-n 0.633 0.629 0.647 0.633 0.647 0.647 0.647 0.651
BM-RGARCH-t 0.739 0.763 0.784 0.773 0.678 0.679 0.694 0.683
BMpc-RGARCH-n 0.623 0.612 0.598 0.614 0.632 0.636 0.630 0.633
BMpc-RGARCH-t 0.729 0.696 0.743 0.733 0.664 0.640 0.635 0.628
ETH
BM-GARCH-n 0.779 0.793 0.798 0.787 1.161 1.181 1.168 1.169
BM-GARCH-t 0.895 0.894 0.863 0.848 1.048 1.064 1.076 1.067
BM-RGARCH-n 0.681 0.711 0.686 0.672 0.905 0.879 0.916 0.933
BM-RGARCH-t 1.048 1.048 1.080 1.060 0.906 0.933 0.929 0.939
BMpc-RGARCH-n 0.645 0.635 0.602 0.620 0.852 0.858 0.844 0.894
BMpc-RGARCH-t 0.878 0.951 0.889 0.899 0.851 0.853 0.807 0.822
LTC
BM-GARCH-n 0.740 0.721 0.720 0.719 0.965 0.937 0.931 0.930
BM-GARCH-t 0.845 0.861 0.856 0.855 0.865 0.836 0.836 0.832
BM-RGARCH-n 0.688 0.704 0.686 0.729 0.763 0.751 0.742 0.747
BM-RGARCH-t 1.004 1.019 1.039 1.032 0.937 0.926 0.888 0.891
BMpc-RGARCH-n 0.615 0.605 0.592 0.624 0.744 0.671 0.692 0.699
BMpc-RGARCH-t 0.891 0.905 0.888 0.898 0.797 0.756 0.708 0.826

Notes: The table presents the forecast errors, understood as HMSE, for the considered cryptocurrencies (displayed at the top) corresponding to various GARCH models
(displayed at the left). They are based on the squared difference between the forecast and the realized variance adjusted for heteroscedasticity. The realized variance is
used as a proxy of variance and estimated as the sum of squares of 5-min log returns. The lowest values of HMSE are marked in bold.
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parametric and fully nonparametric approaches are reported in
Appendix A. The outcomes of separate VaR and ES tests are presented in
Tables 18 and 19. The p-values of the VaR tests show that the VaR
predictions obtained from all models considered in the study satisfy both
evaluation criteria. It means that there is no model with any evidence
that the overall ratio of VaR exceedances is different than the assumed
VaR level or the VaR residuals are dependent on time. Unlike for VaR,
the statistical tests are not always passed for ES. For instance, in the

LTC/USD case, the ES forecasts are rejected for most models. The only
forecasts not rejected for this cryptocurrency come from the newly
proposed BM-RGARCH models with the normal or Student’s t-distribu-
tion. This gives an example of a practical advantage of the proposed
robust estimation method combined with the RGARCH approach. For
other cryptocurrencies, the ES forecasts are usually not rejected at the
0.05 significance level (with one exception, ES forecasts from the
RGARCH model with the normal distribution for ETC/USD).

Table 15
Evaluation of variance forecasts based on the HMAE measures for various quantile orders used for the calculation of the k and a parameters.

Model Order of a

0.975 0.99

Order of k Order of k

0.9 0.95 0.975 0.99 0.9 0.95 0.975 0.99

BTC
BM-GARCH-n 0.628 0.640 0.631 0.631 0.826 0.825 0.825 0.825
BM-GARCH-t 0.770 0.782 0.767 0.762 0.783 0.773 0.775 0.778
BM-RGARCH-n 0.608 0.610 0.611 0.609 0.696 0.691 0.696 0.697
BM-RGARCH-t 0.873 0.894 0.862 0.860 0.770 0.775 0.775 0.775
BMpc-RGARCH-n 0.604 0.562 0.542 0.527 0.661 0.642 0.620 0.616
BMpc-RGARCH-t 0.839 0.820 0.738 0.757 0.718 0.699 0.679 0.666
ETC
BM-GARCH-n 0.544 0.540 0.539 0.538 0.543 0.538 0.537 0.541
BM-GARCH-t 0.550 0.554 0.560 0.567 0.531 0.532 0.533 0.532
BM-RGARCH-n 0.542 0.538 0.540 0.536 0.513 0.512 0.515 0.515
BM-RGARCH-t 0.579 0.582 0.597 0.589 0.537 0.537 0.545 0.542
BMpc-RGARCH-n 0.528 0.519 0.509 0.525 0.501 0.506 0.506 0.507
BMpc-RGARCH-t 0.574 0.555 0.582 0.576 0.528 0.510 0.505 0.504
ETH
BM-GARCH-n 0.536 0.544 0.546 0.539 0.741 0.751 0.744 0.742
BM-GARCH-t 0.580 0.592 0.577 0.572 0.679 0.686 0.689 0.685
BM-RGARCH-n 0.513 0.531 0.517 0.507 0.613 0.596 0.617 0.624
BM-RGARCH-t 0.700 0.712 0.723 0.708 0.624 0.652 0.637 0.642
BMpc-RGARCH-n 0.503 0.497 0.476 0.478 0.601 0.594 0.581 0.598
BMpc-RGARCH-t 0.625 0.667 0.633 0.624 0.631 0.632 0.592 0.589
LTC
BM-GARCH-n 0.534 0.531 0.530 0.530 0.648 0.637 0.634 0.634
BM-GARCH-t 0.583 0.593 0.589 0.590 0.602 0.592 0.593 0.591
BM-RGARCH-n 0.515 0.520 0.512 0.525 0.533 0.526 0.522 0.524
BM-RGARCH-t 0.632 0.641 0.644 0.640 0.612 0.609 0.584 0.586
BMpc-RGARCH-n 0.484 0.480 0.475 0.488 0.524 0.503 0.502 0.512
BMpc-RGARCH-t 0.599 0.607 0.597 0.599 0.564 0.546 0.522 0.564

Notes: The table presents the forecast errors, understood as HMAE, for the considered cryptocurrencies (displayed at the top) corresponding to various GARCH models
(displayed at the left). They are based on the absolute difference between the forecast and the realized variance adjusted for heteroscedasticity. The realized variance is
used as a proxy of variance and estimated as the sum of squares of 5-min log returns. The lowest values of HMAE are marked in bold.

Table 16
Evaluation of variance forecasts based on the HMSE measure for the BM-
RGARCH model with a proportional cut.

Model Cut parameter

0.1 0.2 0.3 0.4 0.5

BTC
BMpc-RGARCH-n 0.901 0.914 0.988 0.950 1.010
BMpc-RGARCH-t 1.001 1.011 1.108 1.074 1.142
ETC
BMpc-RGARCH-n 0.638 0.636 0.632 0.628 0.632
BMpc-RGARCH-t 0.636 0.633 0.664 0.637 0.637
ETH
BMpc-RGARCH-n 0.848 0.844 0.852 0.846 0.873
BMpc-RGARCH-t 0.807 0.801 0.851 0.820 0.829
LTC
BMpc-RGARCH-n 0.679 0.681 0.744 0.687 0.696
BMpc-RGARCH-t 0.723 0.703 0.797 0.722 0.745

Notes: The table presents the forecast errors, understood as HMSE, for the
considered cryptocurrencies (displayed at the top) corresponding to two BMpc-
RGARCH models (displayed at the left). They are based on the squared differ-
ence between the forecast and the realized variance adjusted for hetero-
scedasticity. The realized variance is used as a proxy of variance and estimated
as the sum of squared 5-min log returns.

Table 17
Evaluation of variance forecasts based on the HMAE measure for the BM-
RGARCH model with a proportional cut.

Model Cut parameter

0.1 0.2 0.3 0.4 0.5

BTC
BMpc-RGARCH-n 0.607 0.609 0.661 0.625 0.648
BMpc-RGARCH-t 0.662 0.666 0.718 0.693 0.720
ETC
BMpc-RGARCH-n 0.508 0.509 0.501 0.505 0.511
BMpc-RGARCH-t 0.504 0.502 0.528 0.506 0.507
ETH
BMpc-RGARCH-n 0.585 0.581 0.601 0.583 0.593
BMpc-RGARCH-t 0.589 0.588 0.631 0.600 0.602
LTC
BMpc-RGARCH-n 0.497 0.498 0.524 0.499 0.500
BMpc-RGARCH-t 0.529 0.521 0.564 0.525 0.530

Notes: The table presents the forecast errors, understood as HMAE, for the
considered cryptocurrencies (displayed at the top) corresponding to two BMpc-
RGARCH models (displayed at the left). They are based on the absolute differ-
ence between the forecast and the realized variance adjusted for hetero-
scedasticity. The realized variance is used as a proxy of variance and estimated
as the sum of squared 5-min log returns.
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The encompassing test of Dimitriadis et al. (2023) allows for joint
evaluation of VaR and ES forecasts coming from the proposed models
against those coming from alternative models. It checks whether a
forecast consisting of a pair of VaR and ES performs not worse than any
parametric forecast combination, including forecasts from the alterna-
tive model. The forecast combinations are given by the so-called link

function. As advocated in Dimitriadis et al. (2023), we use the
no-crossing link function, which prevents VaR and ES forecast crossing.
The test is conducted in two variants: a joint VaR and ES test and an
auxiliary ES test. In the first case, the VaR and ES forecasts are treated on
an equal basis. In the second case, the test compares ES forecasts from
one model to those from the alternative model, and the VaR forecasts are

Table 18
Evaluation of VaR forecasts based on the Kupiec (1995), generalized Markov (Christoffersen, 1998), and corrected geometric (Malecka, 2022) tests.

Model BTC/USD ETC/USD ETH/USD LTC/USD

Kupiec Gen. Markov Geometric Kupiec Gen. Markov Geometric Kupiec Gen. Markov Geometric Kupiec Gen. Markov Geometric

GARCH-n 0.659 0.288 0.497 0.769 0.617 0.300 0.835 0.476 0.500 0.428 0.829 0.416
GARCH-t 0.856 0.227 0.497 0.164 0.545 0.495 0.390 0.290 0.500 0.617 0.713 0.394
RGARCH-n 0.488 0.358 0.496 0.732 0.403 0.213 0.835 0.476 0.500 0.843 0.599 0.500
RGARCH-t 0.659 0.288 0.495 0.305 0.228 0.146 0.835 0.476 0.500 0.910 0.491 0.318
BM-GARCH-n 0.488 0.358 0.496 0.305 0.479 0.500 0.920 0.582 0.498 0.843 0.599 0.500
BM-GARCH-t 0.488 0.358 0.496 0.305 0.479 0.500 0.488 0.807 0.497 0.428 0.829 0.500
BM-RGARCH-n 0.659 0.288 0.280 0.769 0.617 0.453 0.328 0.923 0.497 0.174 0.938 0.500
BM-RGARCH-t 0.856 0.227 0.450 0.551 0.733 0.445 0.920 0.582 0.499 0.139 0.153 0.500
BMpc-RGARCH-n 0.659 0.288 0.299 0.551 0.733 0.316 0.209 0.347 0.500 0.428 0.829 0.498
BMpc-RGARCH-t 0.856 0.227 0.450 0.769 0.617 0.444 0.688 0.144 0.386 0.174 0.938 0.460

Notes: The table presents the p-values of the three VaR tests (displayed at the top) for the considered cryptocurrencies (displayed at the top), corresponding to various
GARCH models (displayed at the left).

Table 19
Evaluation of ES forecasts based on the residual-based test U (McNeil and Frey, 2000) and ES-prediction-corrected variables test UES (Małecka, 2020).

Model BTC/USD ETC/USD ETH/USD LTC/USD

U UES U UES U UES U UES

GARCH-n 0.062 0.069 0.222 0.233 0.168 0.152 0.019 0.020
GARCH-t 0.069 0.065 0.127 0.131 0.133 0.147 0.020 0.029
RGARCH-n 0.115 0.101 0.030 0.021 0.096 0.094 0.010 0.019
RGARCH-t 0.069 0.058 0.367 0.350 0.122 0.113 0.022 0.036
BM-GARCH-n 0.115 0.123 0.129 0.146 0.147 0.150 0.026 0.019
BM-GARCH-t 0.075 0.072 0.059 0.063 0.468 0.486 0.037 0.045
BM-RGARCH-n 0.160 0.153 0.670 0.675 0.167 0.174 0.067 0.064
BM-RGARCH-t 0.088 0.117 0.549 0.549 0.557 0.602 0.169 0.150
BMpc-RGARCH-n 0.142 0.149 0.713 0.744 0.428 0.450 0.035 0.032
BMpc-RGARCH-t 0.075 0.057 0.500 0.501 0.662 0.663 0.025 0.021

Notes: The table presents the p-values of the two ES tests (displayed at the top) for the considered cryptocurrencies (displayed at the top), corresponding to various
GARCH models (displayed at the left).

Table 20
Evaluation proposed VaR and ES models vs standard models based on the encompassing test (Dimitriadis et al., 2023).

Proposed model Joint VaR and ES test Auxiliary ES test Avg. weights

E’ing E’d Comb Incon E’ing E’d Comb Incon

Alternative model GARCH-n
BM-RGARCH-n 2 0 2 0 1 1 1 1 (0.680, 0.514)
BMpc-RGARCH-n 1 0 3 0 2 0 2 0 (0.780, 0.756)
Alternative model GARCH-t
BM-RGARCH-t 1 0 3 0 3 1 0 0 (0.674, 0.999)
BMpc-RGARCH-t 2 0 2 0 3 1 0 0 (0.725, 0.985)
Alternative model RGARCH-n
BM-RGARCH-n 2 0 2 0 3 1 0 0 (0.794, 0.724)
BMpc-RGARCH-n 1 0 3 0 3 1 0 0 (0.801, 0.666)
Alternative model RGARCH-t
BM-RGARCH-t 0 0 4 0 3 1 0 0 (0.643, 0.819)
BMpc-RGARCH-t 0 0 4 0 3 1 0 0 (0.691, 0.558)
Alternative model BM-GARCH-n
BM-RGARCH-n 3 0 1 0 1 1 0 2 (0.705, 0.750)
BMpc-RGARCH-n 2 0 2 0 2 1 0 1 (0.728, 1.000)
Alternative model BM-GARCH-t
BM-RGARCH-t 1 1 2 0 1 1 0 2 (0.500, 0.895)
BMpc-RGARCH-t 2 0 2 0 2 1 1 0 (0.561, 0.550)

Notes: The table summarizes the test results of the joint VaR and ES and the auxiliary ES encompassing tests based on the no-crossing link function for the considered
instruments BTC/USD, ETC/USD, ETH/USD, and LTC/USD. The “E’ing” column gives the number of occurrences (out of four instruments where the proposed model
(displayed at the left) encompasses a competing model (displayed at the top of the panel). The “E’d” column counts the occurrences where the proposed model is
encompassed, “Comb” - neither model encompasses its competitor, and “Incon” - both models encompass each other. The column “Avg. weights” shows the estimated
combination weights of the no-crossing link function (θ1.θ2) averaged over the four instruments.
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treated as auxiliary variables. If the test shows that the competing
forecast contains no additional useful information, the tested model is
referred to as encompassing. The outcomes, presented in Table 20, give
the number of cases when the four proposed models encompass the
alternative ones (denoted “E’ing”), the number of cases when they are
encompassed by any of the alternative ones (denoted “E’d”), the number
of cases where none of the models encompasses its competitor, but the
combination performs best (dented “Comb”) and the number of incon-
clusive results (denoted “Incon”).

The results of the joint VaR and ES test in Table 20 show that, out of
four possible outcomes, mainly two appear (with only one exception),
namely either the proposed models encompass their competitors or the
combination of the proposed and some alternative model performs best.
It means that the proposed models contain significant information that
serves to forecast VaR and ES and should be used either alone or com-
bined with other models. The results of the ES test, when the VaR
forecasts are treated only as auxiliary variables, confirm the advantages
of the proposed models. In this case, though all outcomes appear in
individual cases, one result is clearly dominant: the result that the
proposed models encompass their competitors. It means that, in most
cases, the proposed models contain all relevant information to forecast
ES.

The utility of the risk forecasts in business practice is evaluated by
the loss functions. We have chosen the firm’s loss function FLF proposed
by Sarma et al. (2003), and three firm’s loss functions, C1, C2, and C3,
proposed by Caporin (2008). They are, respectively, given by the
following formulas:

lFLFt =

{ (
rt − V̂aR

t
α(rt)

)2
, if rt < V̂aR

t
α(rt),

− V̂aR
t
α(rt), otherwise,

(23)
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lC3t =
⃒
⃒rt − V̂aR

t
α(rt)

⃒
⃒. (26)

These loss functions evaluate both the VaR level and the amount of
loss when this level is exceeded. Moreover, they penalize both VaR
exceedances (which correspond to risk underestimation) and excessive
VaR predictions (which correspond to risk overestimation). We deem
such functions relevant from the viewpoint of business practice because
they consider two aspects: the regulatory requirements and the com-
pany’s minimization of capital costs. To formally assess the relative

performance of the considered models based on these loss functions, we
apply the model confidence set (MCS) procedure by Hansen et al.
(2011). As with the volatility predictions, this procedure allows us to
determine SSM, the set of best models with a given confidence level.

The mean values of the loss functions FLF, C1, C2, and C3, outcomes
of the MSC test, and ranking of the models belonging to SSM are given in
Tables 21–24. These results point to several conclusions. First, the
leading position in all rankings always belongs to one of the four pro-
posed BM-RGARCH models. Second, several BM-RGARCH models usu-
ally belong to SSM. For the C1 function and ETH/USD cryptocurrency,
all BM-RGARCH models belong to this set. Third, in the majority of
cases, the representatives of the BM-RGARCH family are the only models
belonging to SSM. In the case of the C1 function, there is no exception
from this rule, i.e. none of the other models belongs to SSM for any of the
cryptocurrencies. These conclusions demonstrate the practical advan-
tage of the newly proposed approach over traditional models.

The above loss functions are relevant to regulatory requirements
because they penalize the amount of loss connected with VaR exceed-
ances. The severity of VaR exceedances is evaluated by various distance
measures between realized returns and estimated VaR. This is in line
with the current trend in the regulatory requirements, which is to move
from measuring the number of exceedances towards measuring the
amount of potential loss (Basel Committee on Banking Supervision,
2017). However, as of now, the basic system of backtesting rules
imposed by the Basel Committee is still based on the number of VaR
exceedances. Thus, according to these rules, we complete our analysis by
performing the so-called Basel traffic light test. To this end, for each
instrument, we compute the average capital charges, penalty, and the
proportion of time spent in the green, yellow, and red zones. The penalty
k and zone assignment result from the number of VaR exceedances in the
last 250 days (Basel Committee on Banking Supervision, 1996), while
the capital charges are computed according to the formula

cc* =min
(
(3+ k)cc, V̂aR

t− 1
0.01(rt)

)
(27)

where k is the penalty, cc = 1
60
∑60

i=1 V̂aR
t− i
0.01(rt) is the average 1% VaR

over the last 60 days and V̂aR
t− 1
0.01(rt) is the VaR forecast for the last day

(see Liu and Luger, 2015 for the empirical application of this function).
The results of the procedure are presented in Table 25. The com-

parison of the proposed and the traditional models does not show
dominance on any of the sides. For one of the instruments – ETC/USD –
the proposed models are clearly superior – they give much lower capital
charges (86–101 vs 124–151) with very safe penalty (resulting in around
70–80% of time in the green zone). For BTC/USD, the RGARCH models
are slightly prevailing in terms of capital charges (49–57 vs 57–61), and
for ETH/USD, the traditional models are slightly better than the pro-
posed ones (60–81 vs 70–83). For the last currency – LTC/USD – the

Table 21
Evaluation of risk forecasts based on the firm’s loss function FLF (Sarma et al., 2003).

Model BTC/USD ETC/USD ETH/USD LTC/USD

FLF MCS p-value Rank FLF MCS p-value Rank FLF MCS p-value Rank FLF MCS p-value Rank

GARCH-n 13.067 0.000  19.857 0.000  15.553 0.001  16.224 0.100 
GARCH-t 13.811 0.000  24.637 0.000  16.735 0.000  16.668 0.000 
RGARCH-n 12.479 0.665* 2 19.741 0.000  15.881 0.000  16.442 0.000 
RGARCH-t 12.631 0.054  20.309 0.000  15.899 0.000  16.448 0.000 
BM-GARCH-n 13.034 0.000  24.421 0.000  15.224 0.011  16.587 0.000 
BM-GARCH-t 12.819 0.010  23.393 0.000  15.755 0.000  16.165 0.001 
BM-RGARCH-n 12.432 1.000* 1 18.261 0.082  14.896 0.197* 2 15.791 0.189* 2
BM-RGARCH-t 12.780 0.000  17.693 1.000* 1 16.738 0.000  19.810 0.000 
BMpc-RGARCH-n 12.652 0.133* 3 18.364 0.053  14.790 1.000* 1 15.765 0.173* 1
BMpc-RGARCH-t 12.796 0.000  17.888 0.082  16.327 0.000  15.586 1.000 

Notes: The table presents the values of the firm’s loss function FLF for the considered cryptocurrencies (displayed at the top) corresponding to various GARCH models
(displayed at the left). The lowest values of the loss function are marked in bold. Each value of the FLF is accompanied by the p-value from theMCS test. The MCS test is
performed jointly for all models. The symbol * indicates that the model belongs to the set of best models with a confidence level of 0.90. The ranking is for models
belonging to the set of best models.
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proposed and traditional models exhibit similar results, especially when
comparing the lowest attainable capital charges (69–104 and 67–82,
respectively). The penalty stays safe for all cryptocurrencies in both
compared groups of models, allowing them to stay around 60% of the
time or more in a green zone.

5. Conclusions

Two characteristics that distinguish cryptocurrency returns from

returns of traditional financial assets are huge volatility and large oc-
casional price swings. Standard GARCH models do not capture the
volatility dynamics of cryptocurrencies well, mostly because of the
occurrence of extremely large observations (Charles and Darné, 2019).
For this reason, we propose a new approach to model volatility, which
combines the range-based volatility model with the robust estimation
method. To make such an approach feasible, we modify the bounded
M-estimator of Muler and Yohai (2008) and use it for the RGARCH
model of Molnár (2016). Thanks to this merger, we use additional

Table 22
Evaluation of risk forecasts based on the firm’s loss function C1 (Caporin, 2008).

Model BTC/USD ETC/USD ETH/USD LTC/USD

C1 MCS p-value Rank C1 MCS p-value Rank C1 MCS p-value Rank C1 MCS p-value Rank

GARCH-n 0.786 0.000  0.801 0.000  0.749 0.000  0.752 0.006 
GARCH-t 0.797 0.000  0.839 0.000  0.772 0.000  0.761 0.000 
RGARCH-n 0.777 0.072  0.795 0.000  0.755 0.000  0.755 0.000 
RGARCH-t 0.779 0.000  0.801 0.000  0.758 0.000  0.756 0.000 
BM-GARCH-n 0.783 0.000  0.835 0.000  0.746 0.002  0.760 0.000 
BM-GARCH-t 0.779 0.000  0.828 0.000  0.756 0.000  0.752 0.000 
BM-RGARCH-n 0.772 1.000* 1 0.776 0.299* 3 0.739 1.000* 1 0.743 0.761* 2
BM-RGARCH-t 0.778 0.000  0.774 1.000* 1 0.766 0.000  0.795 0.000 
BMpc-RGARCH-n 0.777 0.000  0.778 0.173* 4 0.739 0.945* 2 0.743 0.761* 3
BMpc-RGARCH-t 0.777 0.001  0.775 0.476* 2 0.763 0.000  0.742 1.000* 1

Notes: The table presents the values of the firm’s loss function C1, for the considered cryptocurrencies (displayed at the top) corresponding to various GARCH models
(displayed at the left). The lowest values of the loss function are marked in bold. Each value of the C1 is accompanied by the p-value from the MCS test. The MCS test is
performed jointly for all models. The symbol * indicates that the model belongs to the set of best models with a confidence level of 0.90. The ranking is for models
belonging to the set of best models.

Table 23
Evaluation of risk forecasts based on the firm’s loss function C2 (Caporin, 2008).

Model BTC/USD ETC/USD ETH/USD LTC/USD

C2 MCS p-value Rank C2 MCS p-value Rank C2 MCS p-value Rank C2 MCS p-value Rank

GARCH-n 7.959 0.000  12.751 0.000  8.308 0.001  8.828 0.285* 4
GARCH-t 8.666 0.000  17.848 0.000  9.668 0.000  9.407 0.000 
RGARCH-n 7.371 0.219* 2 12.324 0.000  8.681 0.000  8.987 0.037 
RGARCH-t 7.469 0.000  13.010 0.000  8.849 0.000  9.087 0.000 
BM-GARCH-n 7.932 0.000  17.613 0.000  8.131 0.021  9.386 0.000 
BM-GARCH-t 7.714 0.000  16.615 0.000  8.814 0.000  9.054 0.002 
BM-RGARCH-n 7.269 1.000* 1 10.952 0.124* 2 7.849 0.676* 2 8.634 1.000* 1
BM-RGARCH-t 7.575 0.000  10.766 1.000* 1 9.793 0.000  12.901 0.000 
BMpc-RGARCH-n 7.497 0.001  11.154 0.009  7.828 1.000* 1 8.637 0.987* 3
BMpc-RGARCH-t 7.572 0.000  10.950 0.055  9.434 0.000  8.642 0.987* 2

Notes: The table presents the values of the firm’s loss function C2, for the considered cryptocurrencies (displayed at the top) corresponding to various GARCH models
(displayed at the left). The lowest values of the loss function are marked in bold. Each value of the C2 is accompanied by the p-value from the MCS test. The MCS test is
performed jointly for all models. The symbol * indicates that the model belongs to the set of best models with a confidence level of 0.90. The ranking is for models
belonging to the set of best models.

Table 24
Evaluation of risk forecasts based on the firm’s loss function C3 (Caporin, 2008).

Model BTC/USD ETC/USD ETH/USD LTC/USD

C3 MCS p-value Rank C3 MCS p-value Rank C3 MCS p-value Rank C3 MCS p-value Rank

GARCH-n 12.251 0.000  19.050 0.000  13.933 0.002  14.540 0.249* 4
GARCH-t 13.008 0.000  24.513 0.000  15.487 0.000  15.233 0.000 
RGARCH-n 11.598 0.023  18.564 0.000  14.360 0.000  14.740 0.050 
RGARCH-t 11.662 0.000  19.323 0.000  14.582 0.000  14.862 0.000 
BM-GARCH-n 12.178 0.000  24.245 0.000  13.753 0.024  15.216 0.000 
BM-GARCH-t 11.924 0.000  23.191 0.000  14.524 0.000  14.827 0.002 
BM-RGARCH-n 11.412 1.000* 1 17.021 0.103* 2 13.425 0.857* 2 14.337 0.569* 2
BM-RGARCH-t 11.749 0.000  16.796 1.000* 1 15.579 0.000  14.350 0.569* 3
BMpc-RGARCH-n 11.694 0.000  17.279 0.004  13.415 1.000* 1 14.298 1.000* 1
BMpc-RGARCH-t 11.750 0.000  17.017 0.042  15.202 0.000  19.035 0.000 

Notes: The table presents the values of the firm’s loss function C3, for the considered cryptocurrencies (displayed at the top) corresponding to various GARCH models
(displayed at the left). The lowest values of the loss function are marked in bold. Each value of the C3 is accompanied by the p-value from the MCS test. The MCS test is
performed jointly for all models. The symbol * indicates that the model belongs to the set of best models with a confidence level of 0.90. The ranking is for models
belonging to the set of best models.
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information commonly available alongside daily closing prices, i.e.,
daily low and high prices, and at the same time, we limit the influence of
extreme observations on the estimation results. This procedure is not as
sensitive to outliers as the maximum likelihood estimation of the
range-based models. We also propose to introduce an additional feature
to the bounded M-estimator, which allows us to account for the size of
the outliers. In this proposition, we suggest not limiting the outliers to
the specified value but decreasing them proportionally to their size. It
reflects the observations of financial markets, where, after extreme
events, the volatility persists at an increased level.

We apply the suggested range-based volatility model with the
modified robust estimation method to four cryptocurrencies: Bitcoin,
Ethereum Classic, Ethereum, and Litecoin. We compare the proposed
approach with other approaches that differ in the model specification,
distribution of the error term, and estimation method. The results show
huge differences among estimated values of parameters for the applied
models. Such differences expose the practical importance of the model
choice and a relevant estimation method.

We evaluate the accuracy of forecasts from all considered volatility
models. We find that forecasts of volatility and risk based on the pro-
posed approach are more accurate than forecasts from the three applied
benchmarks: the standard GARCH model, the standard range-based
GARCH model, and the GARCH model with robust estimation. The
best of all analyzed models is the RGARCH model with the normal dis-
tribution of error term and the corrected BM estimator with the pro-
portional cut.

Our approach can be extended in the future tomodel other properties
of financial time series like leverage effect or long memory. Modeling
such features can further improve the forecasting accuracy of the sug-
gested approach. The proposed method can also be applied to other
assets like stocks, traditional currencies, or commodities in order to

investigate whether it is equally as successful as it is for cryptocurren-
cies. Another potential line of future research is an integration of the
range-based GARCH models with alternative robust methods such as
those based on the testing approach (Franses and Ghijsels, 1999) or
wavelet outlier detection with soft or hard thresholding (Grané and
Veiga, 2014). Our proposition can also be extended to a multivariate
approach, where the range-based models can be combined with robust
DCC/CDCC estimation (Boudt et al., 2013) or the methods dedicated to
high-dimensional volatility problems, such as the robust principal
volatility component analysis (Trucíos et al., 2019). The economic value
of our suggested approach can also be assessed based on the utility
measure of West et al. (1993) (see You and Liu, 2020).
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Appendix A

Here, we present the results of using a fully parametric and fully nonparametric approach to evaluate VaR and ES. In the parametric approach, we

Table 25
Evaluation of risk forecasts based on Basel backtesting rules.

Model BTC/USD ETC/USD

Capital charge Penalty Green Yellow Red Capital charge Penalty Green Yellow Red

GARCH-n 59.66 0.03 0.92 0.08 0.00 124.39 0.06 0.86 0.14 0.00
GARCH-t 70.06 0.08 0.82 0.18 0.00 151.30 0.00 1.00 0.00 0.00
RGARCH-n 49.12 0.08 0.82 0.18 0.00 115.08 0.04 0.89 0.11 0.00
RGARCH-t 56.76 0.07 0.85 0.15 0.00 115.73 0.00 1.00 0.00 0.00
BM-GARCH-n 66.35 0.07 0.85 0.15 0.00 149.14 0.00 1.00 0.00 0.00
BM-GARCH-t 63.75 0.07 0.85 0.15 0.00 144.74 0.00 1.00 0.00 0.00
BM-RGARCH-n 59.13 0.11 0.80 0.20 0.00 101.56 0.11 0.77 0.23 0.00
BM-RGARCH-t 60.80 0.11 0.80 0.20 0.00 85.78 0.12 0.70 0.30 0.00
BMpc-RGARCH-n 58.19 0.11 0.80 0.20 0.00 97.96 0.18 0.67 0.33 0.00
BMpc-RGARCH-t 57.20 0.11 0.80 0.20 0.00 93.16 0.09 0.78 0.22 0.00

ETH/USD LTC/USD
Capital charge Penalty Green Yellow Red Capital charge Penalty Green Yellow Red

GARCH-n 61.50 0.00 1.00 0.00 0.00 81.94 0.10 0.79 0.21 0.00
GARCH-t 73.70 0.00 1.00 0.00 0.00 79.37 0.05 0.87 0.13 0.00
RGARCH-n 81.22 0.00 0.99 0.01 0.00 73.34 0.01 0.99 0.01 0.00
RGARCH-t 65.60 0.00 1.00 0.00 0.00 67.44 0.00 1.00 0.00 0.00
BM-GARCH-n 60.47 0.01 0.99 0.01 0.00 69.99 0.01 0.99 0.01 0.00
BM-GARCH-t 79.38 0.12 0.73 0.27 0.00 80.25 0.09 0.77 0.23 0.00
BM-RGARCH-n 70.69 0.12 0.73 0.27 0.00 71.26 0.17 0.64 0.36 0.00
BM-RGARCH-t 82.82 0.08 0.83 0.17 0.00 103.96 0.00 1.00 0.00 0.00
BMpc-RGARCH-n 70.34 0.16 0.69 0.31 0.00 68.65 0.10 0.76 0.24 0.00
BMpc-RGARCH-t 79.03 0.14 0.72 0.28 0.00 76.07 0.20 0.58 0.42 0.00

Notes: The table presents an evaluation of the risk forecasts produced by the competing models (displayed at the left) for the considered instruments BTC/USD, ETC/
USD, ETH/USD, and LTC/USD (displayed at the top of each panel), according to the Basel backtesting rules. For each instrument and model, it gives the average capital
charge and penalty incurred over the last 250 trading days, as well as the proportion of time spent in green, yellow, and red penalty zones. All quantities are calculated
for the whole forecasting period, shortened by the window of 250 initial observations needed to compute the first penalty.
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combine the volatility forecasts obtained from the ten models considered in the paper with the parametric estimation of the distribution quantile and
conditional expectation. The estimation of quantile and conditional expectation involves two types of distribution, normal and Student’s t, which
correspond to the distributional assumptions used to estimate the variance. The initial evaluation of VaR and ES forecasts is based on a statistical
testing procedure. First, we conduct VaR tests of unconditional coverage and independence, then ES tests, and finally, we use the encompassing VaR
and ES tests.

The results of testing VaR and ES separately show that the parametric approach fails in many cases. According to the Kupiec test, VaR forecasts are
unsatisfactory in cases of all robust models, both the proposed and traditional ones, and among the non-robust models, they are unsatisfactory for
models with the normal distribution (Table A1). ES forecasts fail for all models with the normal distribution (Table A2).

With regard to the encompassing test (Table A3), the dominating result for joint VaR and ES forecasts is that the proposed BM-RGARCH models
encompass their competitors. Most often, they encompass all kinds of competitors, the basic GARCH models, the RGARCHmodels and the robust BM-
GARCH models, regardless of the distributional assumption. Sometimes, the combination of the proposed model and one of the competitors turns out
superior. However, the situations in which the proposed models are encompassed are rather exceptional. Similarly, for the auxiliary ES variant of the
test, the proposed models usually encompass all competitors, and apart from inconclusive cases, other results are scarce. This suggests that the in-
formation content included in the proposed models is crucial for forecasting VaR and ES.

Summarizing the results for the parametric VaR and ES forecasts, none of the models are satisfactory. On the one hand, the proposed approach,
linking RGARCH models with the robust BM estimation, is superior compared to the traditional one (as shown by the encompassing test), but, on the
other hand, the forecasts coming from this approach cannot be accepted in the light of the basic statistical tests. Thus, we have decided to employ
nonparametric and semiparametric methods to forecast VaR and ES.

The results of the statistical tests for VaR and ES forecasts coming from the fully nonparametric HS method (Tables A1 and A2) are still not
satisfactory. As shown by the Kupiec test, HS forecasts fail in terms of the number of VaR exceedances. According to the other VaR tests, the inde-
pendence of VaR exceedances is rejected in two cases out of four. The ES tests are passed only for one instrument.

The outcomes connected with the semiparametric approach are presented in Section 4. Here, for completeness of the statistical testing procedure,
we present the results of the encompassing test that checks the proposed models estimated by the semiparametric FHS method against the HS models.

The results of the encompassing test comparing the proposed FHS models vs the HS benchmark (Table A4) are similar to those from testing the
proposed parametric models against their parametric competitors. Namely, either the proposed models are encompassing, or the combination of the
models prevails. Thus, this test confirms that the information content of the proposed models is essential to predict risk accurately.

Table A1
Evaluation of parametric VaR forecasts based on the Kupiec (1995). generalized Markov (Christoffersen, 1998) and corrected geometric (Malecka, 2022) tests.

Model BTC/USD ETC/USD ETH/USD LTC/USD

Kupiec Gen. Markov Geometric Kupiec Gen. Markov Geometric Kupiec Gen. Markov Geometric Kupiec Gen. Markov Geometric

HS 0.058 0.020 0.007 0.002 0.206 0.369 0.000 0.011 0.031 0.002 0.571 0.320
GARCH-n 0.019 0.998 0.498 0.045 0.597 0.422 0.021 0.766 0.499 0.103 0.825 0.498
GARCH-t 0.154 0.609 0.500 0.551 0.733 0.402 0.390 0.290 0.500 0.617 0.713 0.394
RGARCH-n 0.019 0.998 0.499 0.239 0.971 0.406 0.127 0.446 0.500 0.174 0.938 0.500
RGARCH-t 0.488 0.358 0.498 0.732 0.403 0.213 0.597 0.379 0.500 0.910 0.491 0.318
BM-GARCH-n 0.000 0.308 0.499 0.000 0.199 0.499 0.000 0.248 0.456 0.000 0.615 0.260
BM-GARCH-t 0.000 0.599 0.499 0.000 0.075 0.500 0.005 0.986 0.498 0.000 0.546 0.500
BM-RGARCH-n 0.000 0.560 0.499 0.000 0.051 0.500 0.000 0.501 0.499 0.000 0.848 0.405
BM-RGARCH-t 0.000 0.260 0.499 0.000 0.258 0.499 0.002 0.539 0.499 0.001 0.750 0.499
BMpc-RGARCH-n 0.000 0.297 0.499 0.000 0.268 0.500 0.000 0.215 0.356 0.000 0.461 0.499
BMpc-RGARCH-t 0.000 0.622 0.499 0.000 0.258 0.499 0.000 0.106 0.333 0.001 0.750 0.499

Notes: The table presents the p-values of the three VaR tests (displayed at the top) for the considered cryptocurrencies (displayed at the top), corresponding to various
GARCH models (displayed at the left).

Table A2
Evaluation of parametric ES forecasts based on the residual-based test U (McNeil and Frey, 2000) and ES-prediction-corrected variables test UES (Małecka, 2020).

Model BTC/USD ETC/USD ETH/USD LTC/USD

U UES U UES U UES U UES

HS 0.085 0.057 0.036 0.016 0.293 0.081 0.354 0.139
GARCH-n 0.001 0.001 0.000 0.000 0.034 0.032 0.002 0.001
GARCH-t 0.940 0.924 1.000 1.000 0.928 0.898 0.961 0.901
RGARCH-n 0.001 0.001 0.000 0.001 0.011 0.011 0.003 0.004
RGARCH-t 0.834 0.829 1.000 0.995 0.966 0.957 0.886 0.863
BM-GARCH-n 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000
BM-GARCH-t 0.403 0.428 0.736 0.750 0.675 0.690 0.779 0.779
BM-RGARCH-n 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BM-RGARCH-t 0.489 0.506 0.794 0.796 0.594 0.590 0.763 0.768
BMpc-RGARCH-n 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BMpc-RGARCH-t 0.348 0.359 0.835 0.829 0.707 0.708 0.793 0.805

Notes: The table presents the p-values of the two ES tests (displayed at the top) for the considered cryptocurrencies (displayed at the top), corresponding to various
GARCH models (displayed at the left).
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Table A3
Evaluation of the proposed parametric VaR and ES models vs the standard parametric models based on the encompassing test (Dimitriadis et al., 2023).

Proposed model Joint VaR and ES test Auxiliary ES test Avg. weights

E’ing E’d Comb Incon E’ing E’d Comb Incon

Alternative model GARCH-n
BM-RGARCH-n 2 0 2 0 3 0 1 0 (0.806, 0.000)
BMpc-RGARCH-n 2 0 2 0 3 0 1 0 (0.797, 0.000)
Alternative model GARCH-t
BM-RGARCH-t 2 0 2 0 4 0 0 0 (0.977, 0.880)
BMpc-RGARCH-t 2 0 2 0 4 0 0 0 (0.985, 0.879)
Alternative model RGARCH-n
BM-RGARCH-n 2 0 2 0 3 0 1 0 (0.774, 0.000)
BMpc-RGARCH-n 4 0 0 0 4 0 0 0 (0.918, 0.000)
Alternative model RGARCH-t
BM-RGARCH-t 1 0 2 1 3 0 0 1 (0.968, 0.829)
BMpc-RGARCH-t 2 0 2 0 4 0 0 0 (0.972, 0.788)
Alternative model BM-GARCH-n
BM-RGARCH-n 3 0 1 0 0 0 0 4 (0.868, 0.000)
BMpc-RGARCH-n 3 1 0 0 0 0 0 4 (0.795, 0.000)
Alternative model BM-GARCH-t
BM-RGARCH-t 0 1 3 0 0 0 0 4 (0.567, 0.019)
BMpc-RGARCH-t 2 1 1 0 0 0 0 4 (0.645, 0.236)

Notes: The table summarizes testing the proposed parametric models (displayed at the left) against the standard parametric models (displayed at the top of the panels).
Test results of the joint VaR and ES and the auxiliary ES encompassing tests for all considered instruments, BTC/USD, ETC/USD, ETH/USD, and LTC/USD, are based on
the no-crossing link function. The “E’ing” column gives the number of occurrences (out of four instruments where the proposed model encompasses a competing
model, the “E’d” column counts the occurrences where the proposed model is encompassed, “Comb” - neither model encompasses its competitor, and “Incon” - both
models encompass each other. The column “Avg. weights” shows the estimated combination weights of the no-crossing link function (θ1.θ2) averaged over the four
instruments.

Table A4
Evaluation of the proposed semiparametric VaR and ES models vs the historical simulation model based on the encompassing test (Dimitriadis et al., 2023).

Proposed model Joint VaR and ES test Auxiliary ES test Avg. weights

E’ing E’d Comb Incon E’ing E’d Comb Incon

BM-RGARCH-n 1 0 3 0 3 0 1 0 (0.922, 0.957)
BM-RGARCH-t 0 0 4 0 1 0 3 0 (0.89, 0.926)
BMpc-RGARCH-n 3 0 1 0 3 0 1 0 (0.91, 0.952)
BMpc-RGARCH-n 3 0 1 0 2 0 2 0 (0.905, 0.934)

Notes: The table summarizes testing the proposed models estimated by the semiparametric FHS method (displayed at the left) against the nonparametric HS model.
Test results of the joint VaR and ES and the auxiliary ES encompassing tests for all considered instruments, BTC/USD, ETC/USD, ETH/USD, and LTC/USD, are based on
the no-crossing link function. The “E’ing” column gives the number of occurrences (out of four instruments where the proposed model encompasses a competing
model. The “E’d” column counts the occurrences where the proposed model is encompassed, “Comb” - neither model encompasses its competitor, and “Incon” - both
models encompass each other. The column “Avg. weights” shows the estimated combination weights of the no-crossing link function (θ1.θ2) averaged over the four
instruments.
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