

Optical properties of dust grains

our view on cosmic dust

Michiel Min

University of Amsterdam

Outline

- Introduction/Importance
- Methods for types of dust grains:
 - Small, homogeneous grains
 - Homogeneos aggregates
 - Large inhomogeneous aggregates
- Conclusions
- Key areas for improvement

The importance of optical properties

- Astronomy is (largely) the study of radiation
- So basically all information on the properties of dust grains in astronomical environments comes from its interaction with radiation

Degenerate inverse problem

What we want to know

- The composition of the particles
 - (thermal) processing, tracing grain formation
- The size of the particles
 - Grain growth, planet formation
- The structure of the particles
 - Aggregation processes
- The shape of the grains
 - Formation conditions, erosion

What to take away today

- Think carefully about the dust model you use; it matters!
- It is important to study the effects of your choice on the outcome
- We can do a lot, but we are not there yet...

Infrared spectroscopy

Mie theory 1908-2008

- Solution for a homogeneous sphere
- Provides great insight in the physics
- But in most cases the grains are not spheres...

Mie theory 1908-2008

Mie theory 1908-2008

- Scattering properties of large extreme refractive index particles (Muñoz et al. 2006)
- In combination with effective medium theory (Min et al. In press)

Grain types

Heterogeneous (Multiple materials) Grain composition

Homogeneous (Single material)

Large (Aggregates)

Grain size

Several methods:

- Sphere/spheroid:
 - Mie theory (Mie 1908)
 - Seperation of variables (Farafonov, Voshchinnikov)
- Irregularly shaped:
 - Statistical approach (Min, Voshchinnikov)
 - Discrete Dipole Approximation (Purcell, Draine, Yurkin)
 - T-matrix method (Mishchenko, Wriedt)

Several methods:

- Sphere/spheroid:
 - Mie theory (Mie 1908)
 - Seperation of variables (Farafonov, Voshchinnikov)
- Irregularly shaped:
 - Statistical approach (Min, Voshchinnikov)
 - Discrete Dipole Approximation (Purcell, Draine, Yurkin)
 - T-matrix method (Mishchenko, Wriedt)

$$C_{\text{abs}} = \sum_{j=1}^{3N} w_j kV \text{ Im} \left(\frac{m^2 - 1}{1 + L_j(m^2 - 1)} \right)$$

Contains <u>all</u> information on particle shape

Ellipsoid with 'form-factor' L_j

Min et al. JQSRT, 2006

This implies that (in the Rayleigh domain) the optical properties of any arbitrarily shaped particle are identical to those of a distribution of simple shapes.

It is only required that the simple shapes cover the range of form-factors needed.

Examples: CDE (Bohren & Huffman), Hollow Spheres (Min et al.), Multilayered spheres (Voshchinnikov et al.)

It means that if we find 'the' formfactordistribution for an average 'irregurarly shaped' particle, we're done.

This can be obtained:

- From theory
- Experimentally by fitting infrared spectra (see poster by Mutschke et al.)

- The Discrete Dipole Approximation (DDA) can be used to compute optical properties of arbitrarily shaped particles.
- Publicaly available codes:
 - DDSCAT (Draine), ADDA (Yurkin)

Be careful when the refractive index is high!!

Extreme refractive indices

Interstellar silicates: the 10 micron amor **Spheres** 9.0 0.4 0.2 0.7 0.80 **GRF** Particles Solar $\chi^2 = 12.6$ က 0.2 Q 0.80 DHS $(f_{max}=0.7)$ 9.0 0.2

Min et al. 2006

10

 $\lambda (\mu m)$

15

20

25

Homogeneous aggregates

increasing size

Fluffy aggregates look spectroscopically like small grains

Spetember 11, 2008

Cosmic Dust Near & Far

Homogeneous aggregates

Is there a difference between small grains and fluffy aggregates?

Small grains Large grains

Volten et al. 2007

Effective absorption spectra

Inhomogeneous aggregate

 $r_v = 1 \mu m$

Contributions from different components

 $r_V=2 \mu m$

Effective absorption spectra

 $r_V=3 \mu m$

 $r_V=6 \mu m$

Forsterite

Trends observed

- The feature strengths decrease with increasing aggregate size
- Materials with small abundance stay spectroscopically small for large aggregate sizes
- These effects have to be taken into account when studying aggregates!

Efficient ways to compute aggregates

- Effective medium theory
 - Aggregate Polarizability Mixing Rule (APMR), Min et al. (in press)
 - Bruggemann rule (Voshchinnikov et al., 2007)
- Multilayered spheres (Voshchinnikov & Henning, 2008)

Efficient ways to compute aggregates

QuickTime™ and a decompressor are needed to see this picture.

Voshchinnikov & Henning, 2008

Cosmic Dust Near & Far

Efficient ways to compute aggregates

QuickTime™ and a decompressor are needed to see this picture

8

3

10

11

12

13

Tamanai et al., 2006

Spetember 11, 2008

Cosmic Dust Near & Far

Effective medium theories

- Most effective medium theories assume the inclusions are spheres
- This is especially tricky for:
 - Iron inclusions
 - Crystalline inclusions
- The APMR circumvents this for very fluffy structures of 'Rayleigh sized' monomers

Conclusions

- We can compute the optical properties of solid single grains using the statistical approach quite accurately
 - Small grains: formfactor distributions
 - Larger grains: DDA computations
 - Large grains: statistical approach
- The shape model employed can have a large effect on the outcome

Conclusions

- The structure of the grain matters for its spectral signature
- Low abundance materials appear spectroscopically small
- Effective medium theory (APMR) is an efficient way of taking this into account

Key areas for future research

- Opacities of high refractive index materials
 - Iron
 - Carbon
 - Iron-sulfide

Key areas for future research

- Inhomogeneous compact grains
 - Core-mantle structures
 - Iron inclusions
 - Crystalline inclusions

Key areas for future research

- Effects of different aggregate structures on the spectral shapes
 - More compact aggregates
 - Larger constituents
 - Shorter wavelengths
- Models that can also compute the scattering properties correctly
 - Superposition T-matrix
 - Large scale DDA computations

What to take away today

- Think carefully about the dust model you use; it matters!
- It is important to study the effects of your choice on the outcome
- We can do a lot, but we are not there yet...

